Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T01:11:30.106Z Has data issue: false hasContentIssue false

Vertically aligned carbon nanotube-based electrodes for hydrogen production by water electrolysis

Published online by Cambridge University Press:  08 January 2013

Xiaozhi Wang
Affiliation:
Department of Information Science and Electronic Engineering, Institute of Microelectronics and Optoelectronics, Zhejiang University, Hangzhou 310027, China
Hang Zhou*
Affiliation:
School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Peng Li
Affiliation:
Industrial Technology Research Institute of Zhejiang University, Suzhou 310058, China
Wenmiao Shu
Affiliation:
Department of Mechanical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
*
a)Address all correspondence to this author. e-mail: zhouh81@pkusz.edu.cn
Get access

Abstract

Multiwalled carbon nanotubes (MWNTs), due to their unique electrical conductivity and mechanical properties, have led to our interest in their application of water splitting process. This carbon nanotube-based electrode, synthesized by plasma ehanced chemical vapor deposition (PECVD), provides a ∼6 times enhancement of hydrogen production via water electrolysis compared to a graphite electrode in acidic electrolyte. Our PECVD-grown vertically aligned carbon nanotubes show good adhesion to the graphite substrate and long-term sustainability in a strong acid solution without the need for any complicated and expensive pretreatment. Furthermore, the neutral potassium phosphate solution electrolyte (KPi electrolyte) using cobalt salt as the catalyst, as was reported recently, has been used to demonstrate the long-term compatibility of the MWNTs electrode under different electrolyte. MWNTs from thermal chemical vapor deposition growth technique were also fabricated and compared with the PECVD-grown samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kato, T., Kubota, M., Kobayashi, N., and Suzuoki, Y.: Effective utilization of by-product oxygen from electrolysis hydrogen production. Energy 30, 25802595 (2005).CrossRefGoogle Scholar
Miles, M.H. and Thomason, M.A.: Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J. Electrochemical Soc. 123(10), 14591461 (1976).CrossRefGoogle Scholar
Kreuter, W. and Hofmann, H.: Electrolysis: The important energy transformer in a world of sustainable energy. Int. J. Hydrogen Energy 23(8), 661666 (1998).CrossRefGoogle Scholar
Zeng, K. and Zhang, D.: Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307326 (2010).CrossRefGoogle Scholar
Seehra, M.S. and Bollineni, S.: Nanocarbon boosts energy-efficient hydrogen production in carbon-assisted water electrolysis. Int. J. Hydrogen Energy 34, 60786084 (2009).CrossRefGoogle Scholar
Misra, A., Giri, J., and Daraio, C.: Hydrogen evolution on hydrophobic aligned carbon nanotubes arrays. ACS Nano 3(11), 39033908 (2009).CrossRefGoogle Scholar
Kanan, M.W. and Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2. Science 321, 10721075 (2008).CrossRefGoogle ScholarPubMed
Surendranath, Y., Dinca, M., and Nocera, D.G.: Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 131(7), 26152620 (2009).CrossRefGoogle ScholarPubMed
Lima, F.H.B., Lizcano-Valbuena, W.H., Teixeira-Neto, E., Nart, F.C., Gonzalez, E.R., and Ticianelli, E.A.: Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes. Electrochim. Acta 52, 385393 (2006).CrossRefGoogle Scholar
Antolini, E., Salgado, J.R.C., Giz, M.J., and Gonzalez, E.R.: Effects of geometric and electronic factors on ORR activity of carbon supported Pt–Co electrocatalysts in PEM fuel cells. Int. J. Hydrogen Energy 30, 12131220 (2005).CrossRefGoogle Scholar
Muller, R.: Electrode for electrolysis of water. U.S. Patent No. 438268, 1982.Google Scholar
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E.: Crystalline ropes metallic carbon nanotubes. Science 273, 483487 (1996).CrossRefGoogle ScholarPubMed
Dresselhaus, M.S., Dresselhaus, G., and Avouris, P.: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Heidelberg, Germany, 2001).CrossRefGoogle Scholar
Frank, S., Poncharal, P., Wang, Z.L., and de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 17441746 (1998).CrossRefGoogle ScholarPubMed
Schonenberger, C., Bachtold, A., Strunk, C., and Forro, L.: Interference and interactions in multiwall nanotubes. Appl. Phys. A 69, 283295 (1999).Google Scholar
Xu, T., Wang, Z., Miao, J., Chen, X., and Tan, C.M.: Aligned carbon nanotubes for through-wafer. Appl. Phys. Lett. 91, 042108 (2007).CrossRefGoogle Scholar
Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., and Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129 (1999).CrossRefGoogle Scholar
Wang, Q.H., Corrigan, T.D., Dai, J.Y., Chang, R.P.H., and Krauss, A.R.: Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308 (1997).CrossRefGoogle Scholar
Zhou, H., Colli, A., Ahnood, A., Yang, Y., Rupesinghe, N., Butler, T., Haneef, I., Hirala, P., Nathan, A., and Amratunga, G.A.J.: Arrays of parallel connected coaxial multiwall-carbon-nanotube–amorphous-silicon solar cells. Adv. Mater. 21, 39193923 (2009).CrossRefGoogle Scholar
Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622625 (2000).CrossRefGoogle ScholarPubMed
Yoo, E., Nagashima, Y., Yamazaki, T., Matsumoto, T., and Nakamura, J.: Reduction Pt usage fuel cell electrocatalysts using carbon nanotubes non-Pt metals. Polym. Adv. Technol. 17, 540543 (2006).CrossRefGoogle Scholar
Wang, X., Zhou, H., Li, P., Shu, W., Amaratunga, G.A.J., and Milne, W.I.: A vertically aligned carbon nanotube/fiber based electrode for economic hydrogen production by water electrolysis, in 8th International Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010, pp. 488499.Google Scholar
Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J., and Milne, W.I.: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 (2001).CrossRefGoogle Scholar
Teo, K.B.K., Lee, S.B., Chhowalla, M., Seme, V., Binh, V.T., Groening, O., Castignolles, M., Loiseau, A., Pirio, G., Legagneux, P., Pribat, D., Hasko, D.G., Ahmed, H., Amaratunga, G.A.J., and Milne, W.I.: Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibers—how uniform do they grow. Nanotechnology 14, 204 (2003).CrossRefGoogle Scholar
Meyyappan, M., Delzeit, L., Cassell, A., and Hash, D.: Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 12(2), 205 (2003).CrossRefGoogle Scholar
Ren, Z.F., Huang, Z.P., Wang, D.Z., Klemic, J.F., and Reed, M.A.: Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75, 1086 (1999).CrossRefGoogle Scholar
Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., and Gleason, K.K.: Superhydrophobic carbon nanotube forests. Nano Lett. 3, 17011705 (2003).CrossRefGoogle Scholar
Dubey, P.K., Sinha, A.S.K., Talapatra, S., Koratkar, N., Ajayan, P.M., and Srivastava, O.N.: Hydrogen generation by water electrolysis using carbon nanotube anode. Int. J. Hydrogen Energy 34, 39453950 (2010).CrossRefGoogle Scholar
Wang, X., Feng, Y., Unalan, H.E., Zhong, G., Li, P., Yu, H., Akinwande, A.I., and Milne, W.I.: The mechanism of the sudden termination of carbon nanotube supergrowth. Carbon 49, 214 (2011).CrossRefGoogle Scholar