Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T22:55:08.356Z Has data issue: false hasContentIssue false

Very fast biaxial texture evolution using high rate ion-beam-assisted deposition of MgO

Published online by Cambridge University Press:  31 January 2011

Vladimir Matias*
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Jens Hänisch
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E. John Rowley
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Konrad Güth
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Address all correspondence to this author. e-mail: vlado@lanl.gov
Get access

Abstract

We examined crystalline-texture evolution during ion-beam-assisted deposition (IBAD) of MgO thin films. We have demonstrated for the first time that in-plane crystalline texturing in IBAD of MgO scales with deposition rate. At high ion currents an in-plane texture full width at half-maximum (FWHM) of 10° can be achieved in less than 1 s, and 6° in 2.2 s. MgO texture further improves with thickness of a homoepitaxial layer deposited on top. We have developed an empirical quantification of the texture evolution in both IBAD and homoepitaxial layers. The best texture attained thus far in the MgO layer on polished Hastelloy tape has an in-plane FWHM of 1.6°. The high deposition rates demonstrated here make high-throughput manufacturing of IBAD textured templates a practical and cost-effective concept.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., Hammond, R.H.: Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam assisted deposited yttria-stabilized-zirconia. Appl. Phys. Lett. 71, 2955 1997CrossRefGoogle Scholar
2.Iijima, Y., Tanabe, N., Kohno, O., Ikeno, Y.: In-plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 1992CrossRefGoogle Scholar
3.Arendt, P.N., Foltyn, S.R.: Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bull. 29, 543 2004CrossRefGoogle Scholar
4.Arendt, P.N., Foltyn, S.R., Civale, L., DePaula, R.F., Dowden, P.C., Groves, J.R., Holesinger, T.G., Jia, Q.X., Kreiskott, S., Stan, L., Usov, I., Wang, H., Coulter, J.Y.: High critical current YBCO coated conductors based on IBAD MgO. Physica C 412–414, 795 2004CrossRefGoogle Scholar
5.Findikoglu, A.T., Choi, W., Matias, V., Holesinger, T.G., Jia, Q., Peterson, D.E.: Well-oriented silicon thin films with high carrier mobility on polycrystalline substrates. Adv. Mater. 17, 1527 2005CrossRefGoogle Scholar
6.Xiong, X., Lenseth, K.P., Reeves, J.L., Rar, A., Qiao, Y.: RM: High throughput processing of long-length IBAD MgO and epi-buffer templates at SuperPower. IEEE Trans. Appl. Supercond. 17, 3375 2007CrossRefGoogle Scholar
7.Groves, J.R., Arendt, P.N., Kung, H., Foltyn, S.R., DePaula, R.F., Emmert, L.A., Storer, J.G.: Texture development in IBAD MgO films as a function of deposition thickness and rate. IEEE Trans. Appl. Supercond. 11, 2822 2001CrossRefGoogle Scholar
8.Brewer, R.T., Atwater, H.A.: Rapid biaxial texture development during nucleation of MgO thin films during ion-beam-assisted deposition. Appl. Phys. Lett. 80, 3388 2002CrossRefGoogle Scholar
9.Vallejo, R.N., Wu, J.Z.: Ion-beam-assisted deposition of textured magnesium oxide templates on un-buffered glass and silicon substrates. J. Mater. Res. 21, 194 2006CrossRefGoogle Scholar
10.Lu, R., Vallejo, R.N., Fisher, D.W., Wu, J.Z.: Development of textured MgO templates on nonmetallic flexible ceraflex. Appl. Phys. Lett. 89, 132505 2006CrossRefGoogle Scholar
11.Kreiskott, S., Arendt, P.N., Bronisz, L.E., Foltyn, S.R., Matias, V.: Continuous electropolishing of Hastelloy substrates for ion-beam-assisted deposition of MgO. Supercond. Sci. Technol. 16, 613 2003CrossRefGoogle Scholar
12.Matias, V., Hänisch, J., Rowley, E.J., Sheehan, C., Clem, P.G., Kumasaka, N., Kodaka, I.: Preparation of substrates for IBAD-MgO coated conductors, in Progress in High-Temperature Superconductors edited by P. Barnes, D. Lee, C. Park,N. Amemiya, and J. Reeves Mater. Res. Soc. Symp. Proc. 1001E Warrendale, PA 2007 1001-M04-02Google Scholar
13.Matias, V., Gibbons, B.J.: Linear combinatorial approach to thin film research. Rev. Sci. Instrum. 78, 072206 2007CrossRefGoogle ScholarPubMed
14.Findikoglu, A.T., Kreiskott, S., te Riele, P.M., Matias, V.: Role of beam divergence and ion-to-molecule flux ratio in ion-beam-assisted deposition texturing of MgO. J. Mater. Res. 19, 501 2004CrossRefGoogle Scholar
15.Matias, V., Gibbons, B.J., Findikoglu, A.T., Dowden, P.C., Sullard, J., Yates Coulter, J.: Continuous fabrication of IBAD-MgO based coated conductors. IEEE Trans. Appl. Supercond. 15, 2735 2005CrossRefGoogle Scholar
16.Specht, E.D., Goyal, A., Lee, D.F., List, F.A., Kroeger, D.M., Paranthaman, M., Williams, R.K., Christen, D.K.: Cube-textured nickel substrates for high-temperature superconductors. Supercond. Sci. Technol. 11, 945 1998CrossRefGoogle Scholar
17.Matias, V.: (unpublished).Google Scholar
18.Matias, V., Hänisch, J., Sheehan, C., Ugurlu, O., Storer, J.: Reactive Co-evaporation of YBCO for coated conductors. J. Korea Inst. Appl. Supercond. Cryogenics 9, 1 2007Google Scholar
19.Molodyk, A.: (unpublished).Google Scholar