Published online by Cambridge University Press: 31 January 2011
Magnetic Resonance Imaging (MRI) is applied to porous ceramic materials to study structural properties. In ceramics, processing differences create inhomogeneous binder distribution in the materials which can cause the formation of regions with differing densities and voids. These defects can be observed with MRI using solvent permeation. Fractional porosity obtained by using image intensity measurements and weight gain due to solvent permeation can be correlated. Dark regions in the image are due to defects such as closed voids, pockets of binder, or agglomerates. Defects such as voids or agglomerates usually have different magnetic susceptibilities. This difference causes artifacts in the image. By exploiting the increase in signal loss using a gradient-echo sequence, apparent enhancement of voids in ceramics is achieved.