Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T02:19:29.181Z Has data issue: false hasContentIssue false

Wet erosion damage of Cr3C2/Al2O3 composite

Published online by Cambridge University Press:  31 January 2011

Ching-An Jeng
Affiliation:
Deparment of Material Science & Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Jow-Lay Huang*
Affiliation:
Deparment of Material Science & Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
*
a)Address all correspondence to this author. e-mail: JLH888@mail.ncku.edu.tw
Get access

Abstract

This study focused on investigating the role of interfacial microcracking of injection-molded Cr3C2/Al2O3 composite on the erosion mechanism under an impingement erosion test rig. The surface residual strain (stresses) as well as damage were compared in both airborne and wet erosion. The delays in crack propagation at interfacial or triple points and the crack direction changes were frequently observed in the composite. Spontaneous microcracking induced from sintering process, due to thermal expansion mismatch between alumina and chromium carbide, played a key role in erosion mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, D.M., Fu, C.T., and Lin, J.T., Ceram. Inter. 22, 415 (1996).CrossRefGoogle Scholar
2.Heath, G.R., Johnson, T.D., Parry, M.T., and Wall, D.T., Tran. J. Br. Ceram. Soc. 89, 17 (1990).Google Scholar
3.Mckibben, M.J. and Shock, C.A., in Slurry Handing: Design of Solid-Liquid System, edited by Brown, N.P., Heywood, N.I. (Elsevier, Amsterdam, The Netherlands, 1991), pp. 47100.Google Scholar
4.Quresh, J., J. Vac. Sci. Technol. A 4, 2638 (1986).Google Scholar
5.Akimune, Y. and Dgasawaraa, T., J. Mater. Sci. 30, 1000 (1995).CrossRefGoogle Scholar
6.Engman, U., Wear 186–187, 215 (1995).CrossRefGoogle Scholar
7.Galusek, D., Brydson, R., Twigg, P.C., Riley, F.L., Atkinson, A., Zhang, Y.H., J. Am. Ceram. Soc. 84, 1767 (2001).CrossRefGoogle Scholar
8.Twigg, P.C., Davidge, R.W., Roberts, S.G., and Riely, F.L., in Key Engineering Materials (Trans. Tech. Publications, Zurich, Switzerland, 1997), Vol. 132–136, p. 1524.Google Scholar
9.Cho, S.J., Hockey, B.J., Lawn, B.R., and Bennison, J., J. Am. Ceram. Soc. 72, 1249 (1989).CrossRefGoogle Scholar
10.Davidge, R.W. and Riely, F.L., Wear 186–187, 45 (1995).CrossRefGoogle Scholar
11.Franco, A. and Roberts, G., J. Eur. Ceram. Soc. 16, 1365 (1996).Google Scholar
12.Miranda-Martinez, M., Davidge, R.W., and Riely, F.L., Wear 172, 41 (1994).CrossRefGoogle Scholar
13.ASTM G73-93, Liquid Impingement Erosion Testing, (ASTM, Philadelphia, PA, 1993).Google Scholar
14.Lin, H.C., Wu, S.K., and Yeh, C.H., Wear 249, 557 (2001).CrossRefGoogle Scholar
15.Ruff, A.W. and Ives, L.K., Wear 35, 195 (1975).Google Scholar
16.Cohen, J.B., Dolle, H., and James, M.R., Stress Analysis from Powder Diffraction Patterns (National Bureau of Standards, Washington, DC, SP 567, 1980), p. 453.Google Scholar
17.Noyan, I.C. and Cohen, J.B., Residual Stress (Springer Verlag, New York, 1987).CrossRefGoogle Scholar
18.Murugesh, L. and Scattergood, R.O., J. Mater. Sci. 26, 5456 (1991).Google Scholar
19.Wiederhorn, S.M. and Hockey, B.J., J. Mater. Sci. 18, 766 (1983).CrossRefGoogle Scholar
20.Roubort, J.L. and Scattergood, R.O., in Erosion Ceramic of Materials, edited by Ritter, J.E. (Trans. Tech. Publications, Zurich, Switzerland, 1992), p. 23.Google Scholar
21.Srinivasan, S. and Scattergood, R.O., Wear 142, 115 (1991).Google Scholar
22.Wada, S., J. Ceram. Soc. Jpn. Int. Edn. 104, 240 (1991).Google Scholar
23.Evans, A.G., Gulden, M.E., and Rosenblatt, M., Proc. R. Soc. London A 361, 343 (1978).Google Scholar
24.Evans, A.G., in The Science of Ceramic Machining and Surface Finishing II, edited by Hockey, B.J., Rice, R.W. (National Bureau of Standards, Washington, DC, SP 562, 1979) p. 1.Google Scholar
25.Wiederhorn, S.M. and Lawn, B.R., J. Am. Ceram. Soc. 66, 55 (1979).Google Scholar
26.Ritter, J.E., in Erosion Ceramic of Materials, edited by Ritter, J.E. (Trans. Tech. Publications, Zurich, Switzerland, 1992), p. 107.Google Scholar
27.Sparks, A.J. and Hutchings, I.M., Wear 162–164, 139 (1993).CrossRefGoogle Scholar
28.Bahadur, S. and Badruddin, R., in Wear of Materials, edited by Ludema, K.C. (ASME, New York, 1989), p. 143.Google Scholar
29.Liebhard, M. and Levy, A.V., in Wear of Materials, edited by Ludema, K.C. (ASME, New York, 1991), p. 123.Google Scholar
30.Shipway, P.H. and Hutchings, I.M., in Wear of Materials, edited by Ludema, K.C. (ASME, New York, 1991), p. 63.Google Scholar
31.Ruff, A.W. and Wiederhorn, S.M., in Treatise on Materials Science and Technology, edited by Preece, C.M. (Academic Press, New York, 1979), p. 69.Google Scholar
32.Rice, R.W., Ceram. Eng. Sci. Proc. 11, 667 (1990).Google Scholar
33.Jeng, C.A., Huang, J.L., and Lin, J.L., Ceram. Inter. 29, 213 (2003).CrossRefGoogle Scholar
34.Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).CrossRefGoogle Scholar
35.Huang, J.L., Twu, K.C., Lii, D.F., and Li, A.K., Mater. Chem. Phys. 51, 211 (1997).Google Scholar
36.Jeng, C.A., Huang, J.L., Lee, S.Y., and Hwang, B.H., Mater. Chem. Phys. 78, 278 (2002).CrossRefGoogle Scholar
37.Ma, Q. and Clarke, D.R., J. Am. Ceram. Soc. 77, 298 (1994).Google Scholar
38.Atkinson, A., Clarke, D.R., and Webb, S.J., Mater. Sci. Technol. 14, 531 (1998).CrossRefGoogle Scholar
39.Sergo, V., Wang, X.L., Clarke, D.R., and Becher, P.E., J. Am. Ceram. Soc. 78, 2213 (1995).Google Scholar
40.Paggett, J.W., Drake, E.F., Krawitz, A.D., Winholtz, R.A., and Griffin, N.D., Inter. J. Refractory Met. Hard Mater. 20, 187 (2002).CrossRefGoogle Scholar
41.Evans, A.G. and Wilshaws, T.R., J. Mater. Sci. 12, 97 (1997).CrossRefGoogle Scholar