Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:19:31.419Z Has data issue: false hasContentIssue false

Wetting by liquid sodium and fracture path analysis of sodium induced embrittlement of 304L stainless steel

Published online by Cambridge University Press:  27 November 2017

Bassem Barkia
Affiliation:
Laboratoire de Mécanique des Sols, Structures et Matériaux, CentraleSupélec, UMR CNRS 8579, Université Paris-Saclay, Chatenay-Malabry 92295, France
Thierry Auger*
Affiliation:
Laboratoire de Mécanique des Sols, Structures et Matériaux, CentraleSupélec, UMR CNRS 8579, Université Paris-Saclay, Chatenay-Malabry 92295, France; and Laboratoire PIMM, ENSAM–CNRS–CNAM, UMR CNRS 8006, Paris 75013, France
Jean-Louis Courouau
Affiliation:
Den-Service de La Corrosion et du Comportement des Matériaux dans Leur Environnement (SCCME), CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette F-91191, France
Julie Bourgon
Affiliation:
Institut de Chimie et des Matériaux Paris-Est, UMR 7182, CNRS/UPEC, Thiais 94320, France
*
a)Address all correspondence to this author. e-mail: thierry.auger@ensam.eu
Get access

Abstract

The wettability of the 304L steel is an important parameter in Liquid Metal Embrittlement studies. Empirically, it is found to be greatly enhanced by pre-exposure to oxygenated liquid sodium. The corrosion interface formed during exposure to sodium has been analyzed at the nanoscale by transmission electron microscopy using the focused ion beam sampling. A thin layer of sodium chromite (NaxCrO2 with x ≤ 1) is detected at the interface validating wetting on an oxide mechanism for the enhanced wetting after pre-exposure. Fracture micromechanisms and the crack path of liquid sodium-embrittled austenitic steel 304L at 573 K have been investigated down to the nanoscale. High-resolution orientation mapping analyses immediately below the fracture surface show that abundant martensitic transformations (γ → α) and twinning occur during deformation of austenite. The preferential crack path is intergranular along the newly formed γ/γ interfaces. It is concluded that these transformations play a major role in the fracture process.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Fazio, C., ed. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technologies, 2015 ed. (OECD-NEA, Issy-les-Moulineaux, France, 2015).Google Scholar
Hémery, S., Auger, T., Courouau, J.L., and Balbaud-Célérier, F.: Effect of oxygen on liquid sodium embrittlement of T91 martensitic steel. Corros. Sci. 76, 441 (2013).CrossRefGoogle Scholar
Bhat, N.P. and Borgstedt, H.U.: Corrosion behavior of structural materials in sodium influenced by formation of ternary oxides. Mater. Corros. 39, 115 (1988).Google Scholar
Longson, B. and Prescott, J.: Some experiments on the wetting of stainless steel, nickel and iron in liquid sodium. In Liquid Alkali Metals: Proceedings of an International Conference Organized by the British Nuclear Energy Society (Edited by the British Nuclear Energy Society, London, published by Thomas Telfard Limited, Nottingham University, U.K. 1973); pp. 171176.Google Scholar
Hémery, S., Auger, T., Courouau, J.L., and Balbaud-Célérier, F.: Liquid metal embrittlement of an austenitic stainless steel in liquid sodium. Corros. Sci. 83, 1 (2014).Google Scholar
Courouau, J.L., Balbaud-Célérier, F., Lorentz, V., and Dufrenoy, T.: Corrosion by liquid sodium of materials for sodium fast reactors: The CORRONa testing device. In International Congress on Advances in Nuclear Power Plants 2011 (Edited by the Société Française d'Energie Nucléaire, Paris, France, 2011); p. 11152 (available at https://inis.iaea.org/search/search.aspx?orig_q=RN:44092769).Google Scholar
Rauch, E.F., Véron, M., Portillo, J., Bultreys, D., Maniette, Y., and Nicolopoulos, S.: Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Anal. 22, S5 (2008).Google Scholar
Moberly, J.W., Barlow, M., Garrison, M.C., and Planting, P.J.: Electron microscope observations of liquid sodium interaction with 304 stainless steel. J. Nucl. Mater. 29, 223 (1969).Google Scholar
Lorang, G., da Cunha Belo, M., Simões, A.M.P., and Ferreira, M.G.S.: Chemical composition of passive films on AISI 304 stainless steel. J. Electrochem. Soc. 141, 3347 (1994).CrossRefGoogle Scholar
Hodkin, E.N. and Nicholas, M.G.: The Wetting of Cladding Materials and Other Materials and Alloys by Sodium; AERE–R7406, May, 1976.Google Scholar
Braconnier, J.J., Delmas, C., and Hagenmuller, P.: Etude par désintercalation électrochimique des systèmes Na x CrO2 et Na x NiO2 . Mater. Res. Bull. 17, 993 (1982).Google Scholar
Cavell, I.W. and Nicholas, M.G.: Some observations concerned with the formation of sodium chromite on AISI 316 exposed to oxygenated sodium. J. Nucl. Mater. 95, 129 (1980).Google Scholar
Eustathopoulos, N. and Drevet, B.: Interfacial bonding, wettability and reactivity in metal/oxide systems. J. Phys. III 4, 1865 (1994).Google Scholar
James, L.A. and Knecht, R.L.: Fatigue-crack propagation behavior of type 304 stainless steel in a liquid sodium environment. Metall. Trans. A 6, 109 (1975).CrossRefGoogle Scholar
Abe, H. and Shimoyashiki, S.: Time dependent crack growth of type 304 stainless steel in elevated temperature sodium. Eng. Fract. Mech. 26, 657 (1987).Google Scholar
Das, A. and Tarafder, S.: Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. Int. J. Plast. 25, 2222 (2009).Google Scholar
Reid, C.N.: The association of twinning and fracture in bcc metals. Metall. Trans. A 12, 371 (1981).Google Scholar
Martin, M.L., Fenske, J.A., Liu, G.S., Sofronis, P., and Robertson, I.M.: On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Mater. 59, 1601 (2011).Google Scholar