Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T19:43:17.176Z Has data issue: false hasContentIssue false

X-ray diffraction and Raman scattering studies of FeCl3–SbCl5-graphite bi-intercalation compounds

Published online by Cambridge University Press:  31 January 2011

Takeshi Abe
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Yasukazu Yokota
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Yasuo Mizutani*
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Mitsuru Asano
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Toshio Harada
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Minoru Inaba
Affiliation:
Graduate School of Engineering, Kyoto University, Sakyo-ku 606-01, Japan
Zempachi Ogumi
Affiliation:
Graduate School of Engineering, Kyoto University, Sakyo-ku 606-01, Japan
*
a) Address all correspondence to this author.
Get access

Abstract

X-ray diffraction (XRD) and Raman spectroscopy have been used for the study of the bi-intercalation of SbCl5 into a stage 5 FeCl3-graphite intercalation compound (GIC). The stage 5 FeCl3-GIC is prepared by an ordinary two-bulb method with the temperature of graphite at 788 K and that of FeCl3 at 573 K. The FeCl3-SbCl5-graphite bi-intercalation compound (GBC) with one SbCl5 layer is obtained when the temperature of the stage 5 FeCl3-GIC is held at 443 K and the temperature of SbCl5 at 373 K in the two-zone system. The stacking sequence of the GBC is found to be an admixture of G(FeCl3)GG(SbCl5)GGG(FeCl3)G and G(FeCl3)GGG(SbCl5)GG(FeCl3)G by XRD, where G, (FeCl3), and (SbCl5) are the graphite, FeCl3, and SbCl5 layers, respectively. The Raman spectrum of the GBC shows two peaks associated with the and modes at 1588 cm−1 and 1610 cm−1, respectively. For the temperatures of stage 5 FeCl3-GIC at 443 K and SbCl5 at 403 K in the two-zone system, the FeCl3-SbCl5-GBC with two SbCl5 layers is obtained. The stacking sequence of the GBC is determined to be an admixture of G(FeCl3)GG(SbCl5)GG(SbCl5)G(FeCl3)G and G(FeCl3)G(SbCl5)GG(SbCl5)GG(FeCl3)G In the Raman spectrum of this GBC, two peaks associated with the mode are observed at 1616 and 1624 cm−1.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dresselhaus, M. S. and Dresselhaus, G., Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
2.Zabel, H., in Graphite Intercalation Compounds I, edited by Zabel, H. and Solin, S. A. (Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar
3.Zabel, H., in Graphite Intercalation Compounds II, edited by Zabel, H. and Solin, S. A. (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
4.Lagrange, P., Métrot, A., and Hérold, A., C. R. Acad. Sci. Paris Ser. C 273, 701 (1974).Google Scholar
5.Freeman, A. G., J. Chem. Soc. Chem. Commun., 746 (1974).CrossRefGoogle Scholar
6.Scharff, P., Stumpp, E., and Ehrhardt, C., Synth. Met. 23, 415 (1988).CrossRefGoogle Scholar
7.York, B. R., Hark, S. K., and Solin, S. A., Synth. Met. 7, 25 (1983).CrossRefGoogle Scholar
8.Hérold, A., Furdin, G., Guérard, D., Hachim, L., Lelaurain, M., Nadi, N. E., and Vangelisti, R., Synth. Met. 12, 11 (1985).CrossRefGoogle Scholar
9.Suzuki, M., Oguro, I., and Jinzaki, Y., J. Phys. C 17, L575 (1984).CrossRefGoogle Scholar
10.Rancourt, D. G., Hun, B., and Flandoris, S., Can. J. Phys. 66, 776 (1988).CrossRefGoogle Scholar
11.Suzuki, I. S., Vartuli, C., Burr, C. R., and Suzuki, M., Phys. Rev. B 50, 12568 (1994).Google Scholar
12.Suzuki, M., Chow, P. C., and Zabel, H., Phys. Rev. B 32, 6800 (1985).CrossRefGoogle Scholar
13.Shioyama, H., Tatsumi, K., Fujii, R., and Mizutani, Y., Carbon 28, 119 (1990).CrossRefGoogle Scholar
14.Mizutani, Y., Abe, T., Asano, M., and Harada, T., J. Mater. Res. 8, 1586 (1993).CrossRefGoogle Scholar
15.Abe, T., Mizutani, Y., Ihara, E., Asano, M., and Harada, T., J. Mater. Res. 9, 377 (1994).CrossRefGoogle Scholar
16.Abe, T., Yokota, Y., Mizutani, Y., Asano, M., and Harada, T., Phys. Rev. B 52, 14159 (1995).CrossRefGoogle Scholar
17.Abe, T., Mizutani, Y., Asano, M., and Harada, T., J. Mater. Res. 10, 1196 (1995).CrossRefGoogle Scholar
18.Stout, G. and Jenson, L., X-ray Structure Determination (McMillan, New York, 1968).Google Scholar
19.Cullity, B. D., X-ray Diffraction (Addison-Wesley, Reading, MA, 1956).Google Scholar
20.International Tables for X-ray Crystallography III (The Kynoch Press, Birmingham, England, 1962), p. 210.Google Scholar
21.Abe, T., Mizutani, Y., Shinoda, N., Ihara, E., Asano, M., Harada, T., Inaba, M., and Ogumi, Z., Carbon 33, 1789 (1995).CrossRefGoogle Scholar
22.Boca, M. H., Saylors, M. L., Smith, D. S., and Eklund, P. C., Synth. Met. 6, 39 (1983).CrossRefGoogle Scholar
23.Metz, W. and Hohlwein, D., Carbon 13, 87 (1975).CrossRefGoogle Scholar
24.Mélin, J. and Hérold, A., Carbon 13, 357 (1975).CrossRefGoogle Scholar
25.Solin, S. A., Mater. Sci. Eng. 31, 153 (1977).CrossRefGoogle Scholar
26.Nemanich, R. J., Solin, S. A., and Guerard, D., Phys. Rev. B 16, 2965 (1977).CrossRefGoogle Scholar
27.Chan, C. T., Ho, K. M., and Kamitakahara, W. A., Phys. Rev. B 36, 3499 (1987).CrossRefGoogle Scholar
28.Caswell, N. and Solin, S. A., Solid State Commun. 27, 961 (1978).CrossRefGoogle Scholar
29.Hoffman, D. M., Eklund, P. C., Heinz, R. E., Hawrylak, P., and Subbaswamy, K. R., Phys. Rev. B 31, 3973 (1985).CrossRefGoogle Scholar