Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T23:19:39.007Z Has data issue: false hasContentIssue false

X-ray diffraction and transmission electron microscopy analysis of ordering and structure in Al1−xInxAs thin films

Published online by Cambridge University Press:  31 January 2011

R. L. Forrest
Affiliation:
Physics Department, University of Houston, Houston, Texas 77204-5506
J. Kulik
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5932
T. D. Golding
Affiliation:
Physics Department, University of Houston, Houston, Texas 77204-5506
S. C. Moss
Affiliation:
Physics Department, University of Houston, Houston, Texas 77204-5506
Get access

Extract

This paper presents an x-ray diffraction and transmission electron microscopy analysis of Al1−xInxAs grown by molecular beam epitaxy. Two samples grown on (001) InP at temperatures of 370 and 400 °C are characterized. The first, which contains a high density of twin lamellae, exhibits triple-period short-range ordering with a rather short correlation range normal to the (111) planes. Within these (individual) planes, the concentration, however, is uniform over a considerably greater distance, leading to a highly anisotropic scattering. This is the first observation of triple-period short-range ordering in a sample that exhibits 2 × 1 surface reconstruction. The second sample exhibits CuPt-type short-range ordering with scattering that is significantly streaked, suggestive of lamellar-shaped ordered domains. Both samples contain high densities of stacking faults leading to additional sharp streaking along symmetry-allowed 〈111〉 directions.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Norman, A.G., Mallard, R.E., Murgatroyd, I.J., Booker, G.R., Moore, A.H., and Scott, M.D., Inst. Phys. Conf. Ser. 87, 77 (1987).Google Scholar
2.Ueda, O., Fujii, T., Nakada, Y., Yamada, H., and Umebu, I., J. Cryst. Growth 95, 38 (1989).CrossRefGoogle Scholar
3.Gomyo, A., Makita, K., Hino, I., and Suzuki, T., Phys. Rev. Lett. 72, 673 (1994).CrossRefGoogle Scholar
4.Gomyo, A., Suzuki, T., and Iijima, S., Phys. Rev. Lett. 60, 2645 (1988).CrossRefGoogle Scholar
5.Murgatroyd, I.J., Norman, A.G., and Booker, G.R., J. Appl. Phys. 67, 2310 (1990).CrossRefGoogle Scholar
6.Zunger, A. and Mahajan, S., in Handbook on Semiconductors, edited by Moss, T.S. (Elsevier Science, Amsterdam, 1994), p. 1399.Google Scholar
7.Gomyo, A., Makita, K., Hino, I., and Suzuki, T., J. Cryst. Growth 150, 533 (1995).CrossRefGoogle Scholar
8.Suzuki, T., Ichihashi, T., and Nakayama, T., Appl. Phys. Lett. 73, 2588 (1998).CrossRefGoogle Scholar
9.Zhang, S.B., Froyen, S., and Zunger, A., in Optoelectronic Materials: Ordering, Composition Modulation, and Self-Assembled Structures, edited by Jones, E.D., Mascarenhas, A., and Petroff, P. (Mater. Res. Soc. Symp. Proc. 417, Pittsburgh, PA, 1996), p. 43.Google Scholar
10.Philips, B.A., Norman, A.G., Seong, T.Y., Mahajan, S., Booker, G.R., Skowronski, M., Harbison, J.P., and Keramidas, V.G., J. Cryst. Growth 140, 249 (1994).CrossRefGoogle Scholar
11.Sung, M.M. and Rabalais, J.W., Surf. Sci. 356, 161 (1996).CrossRefGoogle Scholar
12.Parker, E.H.C, The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985).CrossRefGoogle Scholar
13.Farrell, H.H. and Palmstrom, C.J., J. Vac. Sci. Technol. B8, 903 (1990).CrossRefGoogle Scholar
14.Choi, W.Y. and Fonstad, C.G., J. Vac. Sci. Technol. B12, 1013 (1994).CrossRefGoogle Scholar
15.Adachi, S. and Kawaguchi, H., J. Electrochem. Soc. 128, 1342 (1981).CrossRefGoogle Scholar
16.Swaminathan, V. and Macrander, A.T., Materials Aspects of GaAs and InP Based Structures (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 2223, 26, 30.Google Scholar
17.Peiro, F., Cornet, A., Morante, J.R., Georgakilas, A., and Christou, A., J. Electron. Mater. 23, 969 (1994).CrossRefGoogle Scholar
18.Ferguson, I.T., Norman, A.G., Joyce, B.A., Seong, T-Y., Booker, G.R., Thomas, R.H., Phillips, C.C., and Stradling, R.A., Appl. Phys. Lett. 59, 3324 (1991).CrossRefGoogle Scholar
19.Warren, B.E., X-Ray Diffraction (Dover Publications, New York, 1990), pp. 18, 38, 241, 275.Google Scholar
20.Baxter, C.S., Stobbs, W.M., and Wilkie, J.H., J. Cryst. Growth 112, 373 (1991).CrossRefGoogle Scholar
21.Baxter, C.S., Stobbs, W.M., Broom, R.F., and Reithmaier, J.P., J. Cryst. Growth 131, 419 (1993).CrossRefGoogle Scholar
22.Gomyo, A., Sumino, M., Hino, I., and Suzuki, T., Jpn. J. Appl. Phys. 34, L469 (1995).CrossRefGoogle Scholar
23.Morita, E., Ikeda, M., Kumagai, O., and Kaneko, K., Appl. Phys. Lett. 53, 2164 (1988).CrossRefGoogle Scholar
24.Mascarenhas, A. (private communication).Google Scholar