Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T04:25:00.795Z Has data issue: false hasContentIssue false

X-ray diffraction study revealing phase coexistence in barium titanate stannate

Published online by Cambridge University Press:  01 October 2004

Volkmar Mueller*
Affiliation:
Fachbereich Physik, Martin-Luther-Universität Halle, D-06108 Halle, Germany
Horst Beige
Affiliation:
Fachbereich Physik, Martin-Luther-Universität Halle, D-06108 Halle, Germany
Hans-Peter Abicht
Affiliation:
Fachbereich Chemie, Martin-Luther-Universität Halle, D-06120 Halle, Germany
Christian Eisenschmidt
Affiliation:
Fachbereich Physik, Martin-Luther-Universität Halle, D-06120 Halle, Germany
*
a)Address all correspondence to this author.e-mail: mueller@physik.uni-halle.de
Get access

Abstract

In this paper, the results of a temperature dependent x-ray diffraction (XRD) study on BaTi0.95Sn0.05O3 (BTS-5) ceramics are compared with dielectric measurements. The orthorhombic-tetragonal phase transition at T2 = 306 K is found to proceed in a considerably wider temperature range than expected from the dielectric anomaly. Although the macroscopic properties of BTS-5 indicate a rather sharp ferroelectric phase transition at Tc = 358K, we observe anomalous XRD-patterns in a 25 K wide temperature range. This is interpreted in terms of mechanically clamped tetragonal and cubic phase, coexisting in the vicinity of Tc in grains with inhomogeneous Sn-distribution.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Smolensky, G.A. and Isupov, V.A. Ferroelectric characteristics of solid solutions of barium stannate in barium titanate (in Russian), Zh. Tekh. Fiz. 24, 1375 (1954).Google Scholar
2Smolensky, G.A.: Physical phenomena in ferroelectrics with diffused phase transition. J. Phys. Soc. Jpn. 28, 26 (1970).Google Scholar
3Jaffe, B., Cook, J. and Jaffe, H.: Piezoelectric Ceramics (Academic, London, U.K., 1971).Google Scholar
4Yasuda, N., Ohwa, H. and Asano, S.: Dielectric properties and phase transitions of BaTi1- x Snx O3 solid solution. Jpn. J. Appl. Phys. 35, 5099 (1996).Google Scholar
5Baskaran, N. and Chang, H.: Effect of Sn doping on the phase transformation properties of ferroelectric BaTiO3. J. Mater. Sci. 12, 527 (2001).Google Scholar
6Oh, K., Uchino, K. and Cross, L.E.: Optical study of domains in Ba(Ti,Sn)O3. J. Am. Ceram. Soc. 77, 2809 (1994).CrossRefGoogle Scholar
7Mueller, V., Beige, H. and Abicht, H-P.: Non-debye dielectric dispersion of barium titanate stannate in the relaxor and diffuse phase-transition state. Appl. Phys. Lett. 84, 1341 (2004).CrossRefGoogle Scholar
8Westphal, V., Kleemann, W. and Glinchuk, M.D.: Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847 (1992).Google Scholar
9Tagantsev, A.K. and Glazounov, A.E.: Mechanism of polarization response in the ergodic phase of a relaxor ferroelectric. Phys. Rev. B 57, 18 (1998).CrossRefGoogle Scholar
10Viehland, D., Jang, S.J., Cross, L.E. and Wuttig, M.: Devation from Curie–Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46, 8003 (1992).Google Scholar
11Bobnar, V., Kutnjak, Z., Pirc, R., Blinc, R. and Levstik, A.: Crossover from glassy to inhomogeneous-ferroelectric nonlinear dielectric response in relaxor ferroelectrics. Phys. Rev. Lett. 84, 5892 (2000).CrossRefGoogle ScholarPubMed
12You, H. and Zhang, Q.M.: Diffuse x-ray scattering study of lead magnesium niobate single crystals. Phys. Rev. Lett. 79, 3950 (1997).CrossRefGoogle Scholar
13Gehring, P.M., Wakimoto, S., Ye, Z-G. and Shirane, G.: Soft mode dynamics above and below the burns temperature in the relaxor Pb(Mg1/3Nb2/3)O3. Phys. Rev. Lett. 87, 277601 (2001).Google Scholar
14Hlinka, J., Kamba, S., Petzelt, J., Kulda, J., Randall, C.A. and Zhang, S.J.: Origin of the “Waterfall” effect in phonon dispersion of relaxor perovskites. Phys. Rev. Lett. 91, 107602 (2003).Google Scholar
15Simon, A., Ravez, J. and Maglione, M.: The crossover from a ferroelectric to a relaxor state in lead-free solid solutions. J. Phys.: Condens. Matter 16, 963 (2004).Google Scholar
16Chang, W-K., Hsieh, S-F., Lee, Y-H., Cheng, K-N., Wu, N-C. and Wang, A.A.: X-ray diffraction studies of phase transformations between tetragonal and cubic phases in the BaSn x Ti1-x O3 system. J. Mater. Sci. 33, 1765 (1998).Google Scholar
17Landolt-Börnstein, III/16. Ferroelectric Oxides (Springer, Berlin, 1981)Google Scholar
18Li, X., Shih, W.Y., Vartuli, J.S., Milius, D.L., Aksay, I.A. and Shih, W-H.: Effect of a transverse tensile stress on the electric-field-induced domain reorientation in soft PZT: In situ XRD study. J. Am. Ceram. Soc. 85, 844 (2002).CrossRefGoogle Scholar
19Hammer, M., Monty, C., Endriss, A. and Hoffmann, M.J.: Correlation between surface texture and chemical composition in undoped, hard, and soft piezoelectric PZT ceramics. J. Am. Ceram. Soc. 81, 721 (1998).Google Scholar
20Fritsberg, V.J., Zvirgzde, J.V. and Romanovskis, T.B.: Transformation of crystal structure in BaTiO3 at the cubic-to-tetragonal phase transition. Ferroelectrics 20, 197 (1978).Google Scholar
21Lin, J.N. and Wu, T.B.: Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions. J. Appl. Phys. 68, 985 (1990).CrossRefGoogle Scholar
22Burns, G. and Dacol, F.H.: Polarization in the cubic phase of BaTiO3. Solid State Commun. 42, 9 (1982).Google Scholar
23Steinhausen, R., Kouvatov, A., Pientschke, C., Seifert, W., Beige, H., Langhammer, H.T. and Abicht, H-P. Bending behavior of monolithic Ba(Ti,Sn)O3-ceramics with a Functionally gradient of the piezoelectric properties. Ferroelectrics (in press).Google Scholar
24Mueller, V., Jäger, L., Beige, H., Abicht, H-P. and Müller, T.: Thermal expansion in the Burns-phase of barium titanate stannate. Solid State Commun. 129, 757 (2004).Google Scholar
25Jacobs, A.E.: Landau theory of structures in tetragonal-orthorhombic ferroelastics. Phys. Rev. B 61, 6587 (2000).Google Scholar