Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T22:06:12.409Z Has data issue: false hasContentIssue false

YBa2Cu3O7−x films on off-axis Y-ZrO2 substrates using Y-ZrO2 or Y2O3 barrier layers

Published online by Cambridge University Press:  03 March 2011

C.H. Mueller
Affiliation:
NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
P.H. Holloway
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
J.D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6024
F.A. Miranda
Affiliation:
NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
K.B. Bhasin
Affiliation:
NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
Get access

Abstract

YBa2Cu3O7−x (YBCO) and barrier layer films were deposited on single-crystal (Y2O3)0.09(ZrO2)0.91 substrates cut between 3.6 and 35.7°off-axis from the (001) planes. The barrier layers were (Y2O3)0.065(Y-ZrO2)0.935(Y-ZrO2), Y2O3, or multilayered structures of Y-ZrO2 and Y2O3. X-ray diffraction showed that the Y-ZrO2 and Y2O3 barrier layers generally grew epitaxially on the off-axis substrates, with the (001) barrier layer film planes being parallel to those of the substrate, and the (100) directions being parallel. YBCO films deposited on Y2O3 barrier layers also showed epitaxy with the YBCO (001) planes being nearly parallel to the substrate (001) planes, even for miscuts up to 35.7°. In contrast, the (001) planes of YBCO films deposited on Y-ZrO2 barrier layers were almost parallel to the substrate surface, not the (001) substrate planes. However, YBCO films on Y-ZrO2 films maintained particular in-plane epitaxial orientations with respect to the substrate. The YBCO full-width at half-maximum (FWHM) x-ray peaks were slightly narrower (0.8°) on Y2O3 barrier layers than on Y-ZrO2 layers (1.3°). The electrical resistivity versus temperature behavior of the YBCO/Y2O3 films was consistent with increased grain boundary scattering as the degree of substrate miscut increased, whereas YBCO/Y-ZrO2 films' resistivities showed less sensitivity to substrate miscut, consistent with the loss of epitaxy.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Norton, D. P., Lowndes, D. H., Budai, J. D., Christen, D. K., Jones, E. C., Lay, K. W., and Tkaczyk, J. E., Appl. Phys. Lett. 57, 1164 (1990).CrossRefGoogle Scholar
2Harshavardhan, K. S., Ramesh, R., Ravi, T. S., Sampere, S., Inam, A., Chang, C. C., Hull, G., Rajeswari, M., Sands, T., Venkatsesan, T., Reeves, M., Tkaczyk, J. E., and Lay, K. W., Appl. Phys. Lett. 59, 1638 (1991).CrossRefGoogle Scholar
3Garrison, S. M., Newman, N., Cole, B. F., Char, K., and Barton, R. W., Appl. Phys. Lett. 58, 2168 (1991).CrossRefGoogle Scholar
4Alarco, J. A., Brosson, G., Ivanov, Z. G., Nilsson, P. A., Olsson, E., and Lofgren, M., Appl. Phys. Lett. 61, 723 (1992).CrossRefGoogle Scholar
5Sheppard, L. M., Bull. Am. Ceram. Soc. 71, 1242 (1992).Google Scholar
6Schmidt, H., Hradil, K., Hosier, W., Wersing, W., Gieres, G., and Seebock, R. J., Appl. Phys. Lett. 59, 222 (1991).CrossRefGoogle Scholar
7Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
8Singh, R. K., Narayan, J., Singh, A. K., and Krishnaswamy, J., Appl. Phys. Lett. 54, 2271 (1989).CrossRefGoogle Scholar
9Gerber, C., Anselmetti, D., Bednorz, J. G., Mannhart, J., and Scholm, D. G., Nature 350, 279.CrossRefGoogle Scholar
10Fork, D. K., Garrison, S. M., Hawley, M., and Geballe, T. H., J. Mater. Res. 7, 1641 (1992).CrossRefGoogle Scholar
11Chin, C. C., Takahashi, H., Morishita, T., and Sugimoto, T., J. Mater. Res. 8, 951 (1993).CrossRefGoogle Scholar
12Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 1792 (1989).CrossRefGoogle Scholar
13Lowndes, D. H., Zhen, X. Y., Zhu, S., and Warmack, R. J., Appl. Phys. Lett. 61, 852 (1992).CrossRefGoogle Scholar
14Budai, J. D., Feenstra, R., and Boatner, L. A., Phys. Rev. B 39, 12355 (1989).CrossRefGoogle Scholar
15Budai, J. D., Chisholm, M. F., Feenstra, R., Lowndes, D. H., Norton, D. P., Boatner, L. A., and Christen, D. K., Appl. Phys. Lett. 58, 2174 (1991).CrossRefGoogle Scholar
16Streiffer, S. K., Lairson, B. M., and Bravman, J. C., Appl. Phys. Lett. 57, 2501 (1990).CrossRefGoogle Scholar
17Bean, C. P., Rev. Mod. Phys., 31 (1964).Google Scholar
18Mukherjee, S. N. and Aita, C. R., J. Vac. Sci. Technol A 10, 3356 (1992).CrossRefGoogle Scholar
19Halbritter, J., J. Appl. Phys. 68, 6315 (1990).CrossRefGoogle Scholar
20Friedman, T. A., Rabin, M. W., Giapintzakis, J., Rice, J. P., and Ginsberg, D. M., Phys. Rev. B 42, 6219 (1990).CrossRefGoogle Scholar