Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T23:22:18.408Z Has data issue: false hasContentIssue false

Yttrium enrichment and improved magnetic properties in partially melted Y-Ba-Cu-O materials

Published online by Cambridge University Press:  31 January 2011

Hamid Hojaji
Affiliation:
The Catholic University of America, Washington, DC 20064
Aaron Barkatt
Affiliation:
The Catholic University of America, Washington, DC 20064
Karen A. Michael
Affiliation:
The Catholic University of America, Washington, DC 20064
Shouxiang Hu
Affiliation:
The Catholic University of America, Washington, DC 20064
Arthur N. Thorpe
Affiliation:
Department of Physics, Howard University, Washington DC 20059
Matthew F. Ware
Affiliation:
Department of Physics, Howard University, Washington DC 20059
Inna G. Talmy
Affiliation:
Naval Surface Warfare Center, Silver Spring, Maryland 20910
Debbie A. Haught
Affiliation:
Naval Surface Warfare Center, Silver Spring, Maryland 20910
Sidney Alterescu
Affiliation:
National Air and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland 20771
Get access

Abstract

Samples of Y-Ba-Cu-O materials with the formulation Y:Ba:Cu = x:2:3 and values of x ranging between 1 and 3 were prepared by partial melting at a maximum temperature of 1045 °C. Measurements of magnetic susceptibility and maximum (low-field) as well as remanent magnetization show highest values for x = 2. XRD and SEM/EDX analyses show that the corresponding structure involves numerous small crystals of Y2BaCuO5 (211) embedded in highly ordered assemblages of continuous YBa2Cu3O7−y (123) layers. The presence of these impurity sites is correlated with flux pinning capacity. Other impurity phases include CuO, a minor phase which shows an increase in amount when x increases, BaCuO3, a possibly detrimental minor phase which vanishes when x is raised from 1 to 2, and zones of intermediate composition between the 211 grains and the 123 layers, which are formed from the residual liquid upon cooling. These intermediate regions, like the 211 grains themselves, become gradually more important when x is increased from 1 to 3.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Laudise, R. A., Schneemeyer, L.F., and Barnes, R. L., J. Crystal Growth 85, 569575 (1987).CrossRefGoogle Scholar
2Jiang, X. P., Huang, J. G., Yu, Y., Jiang, M., Qiao, G.W., Ge, Y. L., Hu, Z. Q., Shi, C. X., Zhao, Y. H., Wang, Y J., Xu, G. Z., and Zhou, Y. E., Supercond. Sci. Technol. 1, 102106 (1988).CrossRefGoogle Scholar
3Oka, K., Nakane, K., Ito, M., Saito, M., and Unoki, H., Jpn. J. Appl. Phys. 27, L1065–L1067 (1988).Google Scholar
4Murakami, M., Morita, M., Doi, K., Miyamoto, K., and Hamada, H., Jpn. J. Appl. Phys. 28, L399–L401 (1989).CrossRefGoogle Scholar
5Hein, R. A., Hojaji, H., Barkatt, A., Shafii, H., Michael, K. A., Thorpe, A. N., and Ware, M. F., J. Superconductivity, December 1989.Google Scholar
6Niewenhuys, G. J., Friedmann, T.A., Rice, J. P., Gehring, P.M., Salamon, M. B., and Ginsberg, D. M., Solid State Commun. 67, 253256 (1988).CrossRefGoogle Scholar
7Horie, Y., Yasuda, T., Youssef, A. A. A., Kondo, R., Shiraki, K., Fukami, T., and Mase, S., Jpn. J. Appl. Phys. 27, L1895–L1898 (1988).CrossRefGoogle Scholar
8Kroeger, D. M., JOM, 14–17 (January 1989).CrossRefGoogle Scholar
9Murugaraj, P.,Maier, J., and Rabenau, A., Solid State Commun. 71, 167171 (1989).CrossRefGoogle Scholar
10Wadayama, Y., Kudo, K., Nagata, A., Ikeda, K., Hanada, S., and Izumi, O., Jpn. J. Appl. Phys. 27, L1221–L1224 (1988).CrossRefGoogle Scholar
11Shi, D., Chen, J. G., Xu, M., Cornelius, A. L., Balachandran, U., and Goretta, K. L., submitted to J. Appl. Phys., July 1989.Google Scholar
12Bordet, P., Chaillout, C., Chenavas, J., Hodeau, J.L., Marezio, M., Karpinski, J., and Kaldis, E., Nature 334, 596598 (1988).CrossRefGoogle Scholar
13Venturini, E. L., Ginley, D. S., Baughman, R. J., Morosin, B., and Kwak, J. F., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L., Materials Research Society Symposium Proceedings (Cambridge University Press, Pittsburgh, PA, 1988), Vol. 99, pp. 639642.Google Scholar
14Hojaji, H., Michael, K. A., Barkatt, A., Thorpe, A. N., Ware, M. F., Talmy, I. G., Haught, D. A., and Alterescu, S., Journal of Materials Research 4, 2832 (1989).CrossRefGoogle Scholar
15Appelman, E.H., Morss, L.R., Kini, A.M., Geiser, U., Umezawa, A., Crabtree, G.W., and Carlson, K.D., Inorg. Chem. 26, 32373239 (1987).CrossRefGoogle Scholar
16Stucki, F., Bruesch, P., and Baumann, T., Physica C 153155, 200 (1988).Google Scholar
17Kwo, J., Hsieh, T. C., Fleming, R. M., Hong, M., Liou, S. H., Davidson, B. A., and Feldman, L. C., Phys. Rev. B 36, 40394042 (1987).CrossRefGoogle Scholar
18Mitchell, T. E., Clarke, D. R., Embury, J. D., and Cooper, A. R., JOM, 6–9 (January 1989).CrossRefGoogle Scholar
19Shaw, T. M., Shinde, S.L., Dimos, D., Cook, R.F., Duncombe, P. R., and Kroll, C., Journal of Materials Research 4, 248256 (1989).CrossRefGoogle Scholar
20Bloom, I., Tani, B.S., Hash, M.C., Shi, D., Patel, M.A., Goretta, K.C., Chen, N., and Capone, D.W., II, J. Mater. Res. 4, 1093– 1098 (1989).Google Scholar
21Jin, S., Sherwood, R.C., Gyorgy, E.M., Tiefel, T. H., van Dover, R.B., Nakahara, S., Schneemeyer, L.F., Fastnacht, R.A., and Davis, M. E., Appl. Phys. Lett. 54, 584586 (1989).CrossRefGoogle Scholar
22Frase, K. G., Liniger, E. G., and Clarke, D. R., J. Am. Ceram. Soc. 70, C204 (1987).CrossRefGoogle Scholar
23Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., van Dover, R.B., Kammlot, G.W., Fastnacht, R.A., and Keith, H. D., Appl. Phys. Lett. 52, 2074–2076(1988).Google Scholar
24Aselage, T. and Keefer, K., Journal of Materials Research 3, 1279 (1988).CrossRefGoogle Scholar