Published online by Cambridge University Press: 05 May 2011
The stress distribution in a shrink fit with solid inclusion subject to homogeneous heating and subsequent cooling is investigated. It is presumed that both components are in a state of plane stress and exhibit the same elastic-plastic material behavior. Based on Tresca's yield condition and the associated flow rule, the modification of the stress distribution is studied analytically. In particular, the reduction of the interface pressure — and therefore of the transferable moment — caused by the occurrence of plastic deformation is discussed, and the criteria for the avoidance of yielding of the inclusion or full plasticization of the hub are given.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.