Published online by Cambridge University Press: 05 May 2011
This research focuses on the analysis of vibration and noise control of a fuselage. A closed cylindrical shell is chosen as the theoretical model of the fuselage of an aircraft. The noise resulted from propellers is the main source of excitation to the fuselage vibration. The vibration can further induce interior noise within the fuselage. For attenuating the vibration of the fuselage and its accompanying interior noise, several pairs of piezoelectric sheets are attached to the shell. Each piezoelectric pair connected to an appropriate electric circuit can serve as a dynamic absorber. For a better performance, feedback control algorithms are introduced to form active absorbers. The dynamic responses of the composite cylindrical shell and the corresponding interior sound fields are analytically formulated. Numerical results are presented. The active absorbers are proven to yield good effects on vibration and noise reductions. Some parameter studies are also given in this manuscript.