Published online by Cambridge University Press: 16 March 2016
2-D graphene nanosheets (GNS) not only have superior mechanical properties, but stacking of GNS in composites is expected to inhibit moisture absorption. In this paper, moisture effect on tensile strength of graphene/epoxy nanocomposites is investigated. Two kinds of graphene reinforcements are used including graphene oxide (GO) and reduced graphene oxide (RGO) with reinforcement weight fraction WGO or WRGO in the range of 0.5 to 3.0wt%. A dispersion agent acetone is added in nanocomposites to enhance graphene dispersion. To evaluate moisture influence, those nanocomposites are soaked in two kinds of liquid including deionized water (DIW) and salt water (saline solution) for seven kinds of soaking periods of time including 24, 48, 72, 100, 400 hours, 30 days, and 60 days. After soaking test, diffusion coefficients of various composites are evaluated; besides tensile strengths of composites are measured by microforce testing machine. In order to correlate the strength with microstructure evolution, several techniques are adopted to analyze morphologies and functionalities of reinforcements and fracture surface of composites. They include Raman spectroscope, X-ray photoelectron spectroscope, and SEM. 2-D GNS are found to effectively enhance nanocomposites by moisture attack, and their corresponding reinforcing mechanisms are proposed.