Published online by Cambridge University Press: 06 August 2020
This paper investigates the electromechanical behavior of functionally graded piezoelectric composite beams containing axially functionally graded (AFG) beam and piezoelectric actuators subjected to electrical load. The mechanical properties of the AFG beam are assumed to be graded along the axial direction. Employing the electromechanical coupling theory and load simulation method, the expression for the simulation load of the piezoelectric actuators is obtained. Based on Euler-Bernoulli beam theory and the obtained simulation load, the differential governing equation of the piezoelectric composite beams subjected to electrical load is derived. The integration-by-parts approach is utilized to solve the differential governing equation, and the expression for the deflection of the piezoelectric composite beams is obtained. The accuracy of the proposed method is validated by the finite element method. The bending response of the functionally graded piezoelectric composite beams is investigated through the proposed method. In the numerical examples, the effects of electrical load, actuator thickness, AFG beam thickness and AFG beam length on the electromechanical behavior of the functionally graded piezoelectric composite beams are studied.