Article contents
Vortex Simulations of the Flow-Field of a Flat Plate with a Non-Zero Angle of Attack
Published online by Cambridge University Press: 05 May 2011
Abstract
A Lagrangian style vortex simulation technique is used to study the flow fields past a stationary flat plate at various angles of attack in the range 1° to 90°. Time mean values of oscillating lift and drag coefficients, and the Strouhal number versus angle of attack are computed and compared with experimental results. Time-mean and root-mean-square values of stream-wise and transverse velocities in the wake region are also calculated. Self-similar defect velocity distribution is obtained far downstream. Owing to the interaction of free shear layers, highly root-mean-square values of velocities appear at the downstream vertex of the triangular low velocity region, which exits behind an inclined flat plate.
- Type
- Technical Note
- Information
- Copyright
- Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2008
References
- 2
- Cited by