Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T21:04:33.090Z Has data issue: false hasContentIssue false

A cost-effective beam forming structure for global navigation satellite system multipath mitigation and its assessment

Published online by Cambridge University Press:  28 December 2020

Qiongqiong Jia
Affiliation:
Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong. Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, Tianjin, China
Li-Ta Hsu*
Affiliation:
Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong.
Bing Xu
Affiliation:
Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong.
Renbiao Wu
Affiliation:
Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, Tianjin, China
*
*Corresponding author. E-mail: lt.hsu@polyu.edu.hk

Abstract

Array antenna beam forming has high potential to improve the performance of the global navigation satellite system (GNSS) in urban areas. However, the widespread application of array antennas for GNSS multipath mitigation is restricted by many factors, such as the complexity of the system, the computation load and conflicts between required performance, cost budget and limited room for the antenna placement. The scope of this work is triplicate. (1) The pre-correlation beam forming structure is first suggested for multipath mitigation to decrease the system complexity. (2) With the pre-correlation structure, the equivalence of adaptive beam forming to quiescent beam forming is revealed. Therefore, the computational load for beam forming is greatly decreased. (3) A theoretical model is established to link the benefits of beam forming with GNSS performance improvement in terms of pseudorange quality. The model can be used by industry to balance the aforementioned restrictions. Numerical results with different array settings are given, and a 2 × 2 rectangle array with $0.4\lambda $ element spacing is suggested as a cost-effective choice in GNSS positioning applications in urban canyon areas.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alnaqbi, A. and El-Rabbany, A. (2010). Precise GPS positioning with low-cost single-frequency system in multipath environment. The Journal of Navigation, 63(2), 301312. doi:10.1017/S0373463309990373CrossRefGoogle Scholar
Amin, M. G., Closas, P., Broumandan, A. and Volakis, J. L. (2016). Vulnerabilities, threats, and authentication in satellite-based navigation systems. Proceedings of the IEEE, 104(6), 11691173. doi:10.1109/JPROC.2016.2550638CrossRefGoogle Scholar
Appel, M., Iliopoulos, A., Fohlmeister, F., Pérez, M. and Emilio, C. (2019). Interference and multipath suppression with space-time adaptive beamforming for safety-of-life maritime applications. CEAS Space Journal, 11(1), 2134. doi:10.1007/s12567-019-0236-xCrossRefGoogle Scholar
Aram, M., El-Rabbany, A., Krishnan, S. and Anpalagan, A. (2007). Single frequency multipath mitigation based on wavelet analysis. The Journal of Navigation, 60(2), 281290. doi:10.1017/S0373463307004146CrossRefGoogle Scholar
Berg, M., Lighari, R. U. R., Kallankari, J., Majava, V. and Salonen, E. T. (2016). Polarization Based Measurement System for Analysis of GNSS Multipath Signals. 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, April 10–15.CrossRefGoogle Scholar
Betz, J. W. and Kolodziejski, K. R. (2009a). Generalized theory of code tracking with an early-late discriminator Part I: lower bound and coherent processing. IEEE Transactions on Aerospace and Electronic Systems, 45(4), 15381556. doi:10.1109/TAES.2009.5310316CrossRefGoogle Scholar
Betz, J. W. and Kolodziejski, K. R. (2009b). Generalized theory of code tracking with an early-late discriminator Part II: noncoherent processing and numerical results. IEEE Transactions on Aerospace and Electronic Systems, 45(4), 15571564. doi:10.1109/TAES.2009.5310317CrossRefGoogle Scholar
Broumandan, A., Jafarnia-Jahromi, A., Daneshmand, S. and Lachapelle, G. (2016). Overview of spatial processing approaches for GNSS structural interference detection and mitigation. Proceedings of the IEEE, 104(6), 12461257. doi:10.1109/JPROC.2016.2529600CrossRefGoogle Scholar
Caizzone, S., Elmarissi, W., Buchner, G. and Sgammini, M., (2016). Compact 6 + 1 Antenna Array for Robust GNSS Applications. IEEE 2016 International Conference on Localization and GNSS (ICL-GNSS), Barcelona, June 2016, 28–30.CrossRefGoogle Scholar
Cuntz, M., Konovaltsev, A. and Meurer, M. (2016). Concepts, development, and validation of multiantenna GNSS receivers for resilient navigation. Proceedings of the IEEE, 104(6), 12881301. doi:10.1109/JPROC.2016.2525764CrossRefGoogle Scholar
Daneshmand, S., Nielsen, J., Broumandan, A. and Lachapelle, G. (2013a). Interference and multipath mitigation utilising a two-stage beamformer for global navigation satellite systems applications. IET Radar, Sonar & Navigation, 7(1), 5566. doi:10.1049/iet-rsn.2012.0027CrossRefGoogle Scholar
Daneshmand, S., Broumandan, A., Sokhandan, N. and Lachapelle, G. (2013b). GNSS multipath mitigation with a moving antenna array. IEEE Transactions on Aerospace and Electronic Systems, 49(1), 693698.CrossRefGoogle Scholar
Fernandez-Prades, C., Arribas, J. and Closas, P. (2016). Robust GNSS receivers by array signal processing: theory and implementation. Proceedings of the IEEE, 104(6), 12071220. doi:10.1109/JPROC.2016.2532963CrossRefGoogle Scholar
Fohlmeister, F., Iliopoulos, A., Sgammini, M., Felix, A. and Josef, A. N. (2017). Dual polarization beamforming algorithm for multipath mitigation in GNSS. Signal Processing, 138, 8697. doi:10.1016/j.sigpro.2017.03.012CrossRefGoogle Scholar
García-Molina, J. A., Fernández-Rubio, J. A. and Parro, J. M. (2018). Exploiting Spatial Diversity for NLOS Indoor Positioning. 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL, September 2018. Institute of Navigation (ION GNSS+, The International Technical Meeting of the Satellite Division of The Institute of Navigation), 34573462.Google Scholar
García-Molina, J. A. and Fernández-Rubio, J. A. (2018). Positioning and Timing in the MIMO-GNSS Framework. 2018 9th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), December 5–7, Noordwijk, The Netherlands.CrossRefGoogle Scholar
García-Molina, J. A. and Fernández-Rubio, J. A. (2019). Array Processing and Unambiguous Positioning of Signals with Multi-Peak Correlations. Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019). Miami, Florida, September 16–20.CrossRefGoogle Scholar
Groves, P. D. and Jiang, Z. (2013). Height aiding, C/N0 weighting and consistency checking for GNSS NLOS and multipath mitigation in urban areas. The Journal of Navigation, 66(5), 653669. doi:10.1017/S0373463313000350CrossRefGoogle Scholar
Hsu, L.-T. (2017). GNSS Multipath Detection using a Machine Learning Approach. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, Oct. 16–19. Piscataway, NJ: IEEE. Available online at http://ieeexplore.ieee.org/servlet/opac?punumber=8307147CrossRefGoogle Scholar
Hsu, L.-T. (2018). Analysis and modeling GPS NLOS effect in highly urbanized area. GPS Solutions, 22(1), 59. doi:10.1007/s10291-017-0667-9CrossRefGoogle Scholar
Hsu, L.-T., Jan, S.-S., Groves, P. D. and Kubo, N. (2015). Multipath mitigation and NLOS detection using vector tracking in urban environments. GPS Solutions, 19(2), 249262. doi:10.1007/s10291-014-0384-6CrossRefGoogle Scholar
Hsu, L.-T., Gu, Y. and Kamijo, S. (2016). 3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS Solutions, 20(3), 413428. doi:10.1007/s10291-015-0451-7CrossRefGoogle Scholar
Irsigler, M., Avila-Rodriguez, J. A. and Hein, G. W. (2005). Criteria for GNSS Multipath Performance Assessment. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005). Long Beach, CA, September 2005, 2166–2177.Google Scholar
Jia, Q., Wu, R., Wang, W., Lu, D., Wang, L. and Li, J. (2017). Multipath interference mitigation in GNSS via WRELAX. GPS Solutions, 21(2), 487498. doi:10.1007/s10291-016-0538-9CrossRefGoogle Scholar
Jia, Q., Wu, R., Wang, W., Lu, D. and Wang, L. (2018). Adaptive blind anti-jamming algorithm using acquisition information to reduce the carrier phase bias. GPS Solutions, 22(4), 13417. doi:10.1007/s10291-018-0764-4CrossRefGoogle Scholar
Li, M., Dempster, A. G., Balaei, A. T., Rizos, C. and Wang, F. (2011). Switchable beam steering/null steering algorithm for CW interference mitigation in GPS C/A code receivers. IEEE Transactions on Aerospace and Electronic Systems, 47(3), 15641579.CrossRefGoogle Scholar
Li, Q., Wang, W., Xu, D. and Wang, X. (2014). A robust anti-jamming navigation receiver with antenna array and GPS/SINS. IEEE Communications Letters, 18(3), 467470. doi:10.1109/LCOMM.2014.012314.132451CrossRefGoogle Scholar
Liu, L. and Amin, M. G. (2009). Tracking performance and average error analysis of GPS discriminators in multipath. Signal Processing, 89(6), 12241239. doi:10.1016/j.sigpro.2009.01.007CrossRefGoogle Scholar
Luo, R., Xu, Y. and Yuan, H. (2016). Performance evaluation of the new compound-carrier-modulated signal for future navigation signals. Sensors (Basel, Switzerland), 16(2), 142. doi:10.3390/s16020142CrossRefGoogle ScholarPubMed
McGraw, G. A. and Braasch, M. S. (1999). GNSS Multipath Mitigation Using Gated and High Resolution Correlator Concepts. Proceedings of the 1999 National Technical Meeting of The Institute of Navigation, San Diego, CA, January 1999, 333–342.Google Scholar
Realini, E. and Reguzzoni, M. (2013). goGPS: open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning. Measurement Science and Technology, 24(11), 115010. doi:10.1088/0957-0233/24/11/115010CrossRefGoogle Scholar
Sahmoudi, M. and Amin, M. G. (2009). Robust tracking of weak GPS signals in multipath and jamming environments. Signal Processing, 89(7), 13201333. doi:10.1016/j.sigpro.2009.01.001CrossRefGoogle Scholar
Seco-Granados, G., Fernandez-Rubio, J. A. and Fernandez-Prades, C. (2005). ML estimator and hybrid beamformer for multipath and interference mitigation in GNSS receivers. IEEE Transactions on Signal Processing, 53(3), 11941208. doi:10.1109/TSP.2004.842193CrossRefGoogle Scholar
Sgammini, M., Caizzone, S., Hornbostel, A. and Meurer, M. (2019). Interference mitigation using a dual-polarized antenna array in a real environment. Navigation, 66(3), 523535. doi:10.1002/navi.309CrossRefGoogle Scholar
Sokhandan, N., Broumandan, A., Curran, J. T. and Lachapelle, G. (2014). High resolution GNSS delay estimation for vehicular navigation utilizing a doppler combining technique. The Journal of Navigation, 67(4), 579602. doi:10.1017/S0373463313000830CrossRefGoogle Scholar
Sun, R., Hsu, L.-T., Xue, D., Zhang, G. and Ochieng, W. Y. (2019). GPS signal reception classification using adaptive neuro-fuzzy inference system. The Journal of Navigation, 72(3), 685701. doi:10.1017/S0373463318000899CrossRefGoogle Scholar
Sun, R., Wang, G., Zhang, W., Hsu, L.-T. and Ochieng, W. Y. (2020). A gradient boosting decision tree based GPS signal reception classification algorithm. Applied Soft Computing, 86, 105942. doi:10.1016/j.asoc.2019.105942CrossRefGoogle Scholar
Tamazin, M., Noureldin, A., Korenberg, M. J. and Kamel, A. M. (2016). A new high-resolution GPS multipath mitigation technique using fast orthogonal search. The Journal of Navigation, 69(4), 794814. doi:10.1017/S0373463315001022CrossRefGoogle Scholar
Townsend, B. R, . and Fenton, P. (1994). A Practical Approach to the Reduction of Pseudorange Multipath Errors in a Ll GPS Receiver. Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1994), Salt Lake City, UT, September 20–23.Google Scholar
Townsend, B. R, . and Fenton, P. (1995). Performance evaluation of the multipath estimating delay lock loop. Navigation, 42(3), 502514.CrossRefGoogle Scholar
Tranquilla, J. M., Carr, J. P. and Al-Rizzo, H. M. (1994). Analysis of a choke ring groundplane for multipath control in Global Positioning System (GPS) applications. IEEE Transactions on Antennas and Propagation, 42(7), 905911. doi:10.1109/8.299591CrossRefGoogle Scholar
Vagle, N., Broumandan, A., Jafarnia-Jahromi, A. and Lachapelle, G. (2016a). Performance analysis of GNSS multipath mitigation using antenna arrays. The Journal of Global Positioning Systems, 14(1), 265. doi:10.1186/s41445-016-0004-6CrossRefGoogle Scholar
Vagle, N., Broumandan, A. and Lachapelle, G. (2016b). Analysis of multi-antenna GNSS receiver performance under jamming attacks. Sensors (Basel, Switzerland), 16(11), doi:10.3390/s16111937CrossRefGoogle Scholar
Van Nee, R. D. J. (1992a). Reducing multipath tracking errors in spread-spectrum ranging systems - Electronics Letters. Electronics Letters, 28(8), 729731.CrossRefGoogle Scholar
Van Nee, R. D. J. (1992b). The Multipath Estimating Delay Lock Loop - Spread Spectrum Techniques and Applications. IEEE Second International Symposium on Spread Spectrum Techniques and Applications, Nov. 29–Dec. 2, Yokohama, Japan.Google Scholar
Van Veen, B. D. (1990). Optimization of quiescent response in partially adaptive beamformers. IEEE Transactions Acoustics, Speech, Signal Processing, 38(3), 471477. doi:10.1109/29.106865CrossRefGoogle Scholar
Vicario, J. L., Barcelo, M., Manosas, M., Gonzalo, S. G. and Francisco, A. (2010). A Novel Look into Digital Beamforming Techniques for Multipath and Interference Mitigation in Galileo Ground Stations. Advanced Satellite Multimedia Systems Conference (ASMA) and the 11th Signal Processing for Space Communications Workshop.CrossRefGoogle Scholar
Volakis, J. L., O'Brien, A. J. and Chen, C.-C. (2016). Small and adaptive antennas and arrays for GNSS applications. Proceedings of the IEEE, 104(6), 12211232. doi:10.1109/JPROC.2016.2528165CrossRefGoogle Scholar
Wang, Y. and Huang, Z. (2019). MEDLL on-strobe correlator: a combined anti-multipath technique for GNSS signal tracking. The Journal of Navigation, 5, 120. doi:10.1017/S0373463319000870Google Scholar
Wu, R., Wang, W., Lu, D., Wang, L. and Jia, Q. (2018). Adaptive Interference Mitigation in GNSS. Singapore: Springer Singapore.CrossRefGoogle Scholar
Xie, P. and Petovello, M. G. (2015). Improved correlator peak selection for GNSS receivers in urban canyons. The Journal of Navigation, 68(5), 869886. doi:10.1017/S037346331500017XCrossRefGoogle Scholar
Xie, L., Cui, X., Zhao, S. and Lu, M. (2017). Mitigating multipath bias using a dual-polarization antenna: theoretical performance, algorithm design, and simulation. Sensors (Basel, Switzerland), 17(2), doi:10.3390/s17020359CrossRefGoogle ScholarPubMed