Published online by Cambridge University Press: 23 November 2009
When a surface is mapped onto a plane so that the image of a geodesic arc is a straight line on the plane then the mapping is known as a geodesic mapping. It is only possible to perform a geodesic mapping of a surface onto a plane when the surface has constant normal curvature. The normal curvature of a sphere of radius r at all points on the surface is I/r hence it is possible to map the surface of a sphere onto a plane using a geodesic mapping. The geodesic mapping of the surface of a sphere onto a plane is achieved by a gnomonic projection which is the projection of the surface of the sphere from its centre onto a tangent plane. There is no geodesic mapping of the ellipsoid of revolution or the spheroid onto a plane because the ellipsoid of revolution or the spheroid are not surfaces whose curvature is constant at all points. We can, however, still construct a projection of the surface of the ellipsoid from the centre of the body onto a tangent plane and we call this projection a gnomonic projection also.