Article contents
Improving Galileo's Carrier-Phase Time Transfer Based on Prior Constraint Information
Published online by Cambridge University Press: 25 July 2018
Abstract
The Carrier-Phase (CP) technique used in the Global Positioning System (GPS) has proved to be a useful spatial tool for remote precise time transfer. Galileo is a Global Navigation Satellite System like GPS. However, currently, given the low number of satellites at any one observation epoch, Galileo's accuracy and continuity of time transfer leave much to be desired. To achieve better performance of time transfer for Galileo, this study has developed a new approach for Galileo CP time transfer, using prior constraint information such as precise coordinates and troposphere zenith delay constraints. The new approach was applied for precise time transfer in real-time mode and post-processed mode for short baseline and long baseline observations. For the short baseline time link in real-time mode, compared with the standard Galileo CP, the standard deviation improved by 51·4% for the troposphere zenith delay constraint, 47·6% for the station coordinates constraint, and 49·5% when considering both constraints simultaneously. At a 10,000 s time interval, in comparison to the standard CP, the three constraint approaches show stable results as well as improvements of nearly an order of magnitude. In post-processed mode, the constraint approach for Galileo time transfer showed little improvement compared to the standard CP technique for both the short baseline and long baseline time links.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © The Royal Institute of Navigation 2018
References
REFERENCES
- 14
- Cited by