Hostname: page-component-7857688df4-fzltz Total loading time: 0 Render date: 2025-11-13T23:59:29.737Z Has data issue: false hasContentIssue false

Low-cost SDR-based GNSS signal recorder and replayer for equipment testing

Published online by Cambridge University Press:  07 November 2025

Karolis Stankevičius
Affiliation:
Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Vilnius, Lithuania
Rimvydas Aleksiejūnas*
Affiliation:
Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Vilnius, Lithuania
*
Corresponding author: Rimvydas Aleksiejūnas; Email: rimvydas.aleksiejunas@ff.vu.lt

Abstract

The need for Global Navigation Satellite System (GNSS) receiver testing increases with the advent of widespread Internet of Things (IoT) technologies and other electronic devices dependent on position determination. In this paper, a low-cost GNSS multiband L1+L5 signal recorder and replayer for equipment testing purposes is proposed. It is implemented using Software-Defined Radio (SDR) modules HackRF One with proper time and phase synchronisation. The recorder–replayer has been tested with GPS, GALILEO, BEIDOU and GLONASS satellites and several commercial GNSS receivers. Reduced GNSS signal bandwidth of approximately 10 MHz is sufficient for efficient reception of recorded signals. Performed tests with a driving car show applicability of this GNSS recorder–replayer in dynamic settings.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baker, D. and Avenell, B. (2019). RF System Synchronization – LO’s. https://www.gnuradio.org/grcon/grcon19/presentations/Phase_Synchronization_Techniques/Dan Accessed 14 December 2022.Google Scholar
Bartolucci, M., del Peral-Rosado, J. A., Estatuet-Castillo, R., Garcia-Molina, J. A., Crisci, M., and Corazza, G. E. (2016). Synchronisation of Low-Cost Open Source SDRs for Navigation Applications. 2016 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), IEEE, 17.10.1109/NAVITEC.2016.7849328CrossRefGoogle Scholar
Borre, K., Akos, D. M., Bertelsen, N., Rinder, P. and Jensen, S. H. (2007). A Software-Defined GPS and Galileo Receiver: A Single-Frequency Approach. Springer Science & Business Media.Google Scholar
Chen, J., Zhang, S., Wang, H. and Zhang, X. (2013). Practicing a Record-and-Replay System on USRP. Proceedings of the Second Workshop on Software Radio Implementation Forum, 6164.10.1145/2491246.2491257CrossRefGoogle Scholar
China Satellite Navigation Office (2017). BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B2a (Version 1.0).Google Scholar
China Satellite Navigation Office (2018). BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1C (Version 1.0).Google Scholar
China Satellite Navigation Office (2019). BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1I (Version 3.0).Google Scholar
Di, R., Peng, S., Taylor, S., and Morton, Y. (2012). A USRP-based GNSS and Interference Signal Generator and Playback System. Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, IEEE, 470478.10.1109/PLANS.2012.6236916CrossRefGoogle Scholar
Ebinuma, T. (2022). Software-Defined GPS Signal Simulator. https://github.com/osqzss/gps-sdr-sim. Accessed 14 December 2022.Google Scholar
European Union (2021). European GNSS (Galileo) Open Service: Signal in Space Interface Control Document. Office for Official Publications of the European Communities.Google Scholar
Glonass, ICD (2008). Glonass Interface Control Document. Russian Institute of Space Device Engineering.Google Scholar
GNU Radio Website (2022). GNU Radio. https://www.gnuradio.org/. Accessed 14 December 2022.Google Scholar
GPS Directorate (2021a). IS-GPS-200M, Navstar GPS Space Segment/User Segment Interfaces.Google Scholar
GPS Directorate (2021b). IS-GPS-750H, Navstar GPS Space Segment/User Segment L5 interfaces.Google Scholar
GPS Directorate (2021c). IS-GPS-800H, Navstar GPS Space Segment/User Segment L1C interfaces.Google Scholar
Hasan, M. (2022). State of IoT 2022: Number of Connected IoT Devices Growing 18% to 14.4 Billion Globally. https://iot-analytics.com/number-connected-iot-devices/. Accessed 14 December 2022.Google Scholar
Hegarty, C. J. (2011). Analytical Model for GNSS Receiver Implementation Losses. Navigation, 58(1), 2944.10.1002/j.2161-4296.2011.tb01790.xCrossRefGoogle Scholar
Hein, G. W., Avila-Rodriguez, J.-A., Wallner, S., Pratt, A. R., Owen, J., Issler, J.-L., Betz, J. W., Hegarty, C. J., Lenahan, L. S., Rushanan, J. J., et al. (2006). MBOC: The New Optimized Spreading Modulation Recommended for GALILEO L1 OS and GPS L1C. Proceedings of the 2006 IEEE/ION Position, Location and Navigation Symposium, IEEE, 883892.10.1109/PLANS.2006.1650688CrossRefGoogle Scholar
Hennigar, A. (2014). Analysis of Record and Playback Errors of GPS Signals Caused by the USRP. Ph.D. thesis, Auburn University.Google Scholar
Jeffrey, C. (2015). An Introduction to GNSS: GPS, GLONASS, Galileo and Other Global Navigation Satellite Systems. NovAtel.Google Scholar
Jepson, D. (2019). RF System Synchronization — Baseband. https://www.gnuradio.org/grcon/grcon19/presentations/Synchronization_Core_Concepts_and_Applications/Daniel Accessed 14 December 2022.Google Scholar
KrakenRF Inc (2022). KerberosSDR Quickstart Guide. https://www.rtl-sdr.com/ksdr/. Accessed 14 December 2022.Google Scholar
Krueckemeier, M., Schwartau, F., Monka-Ewe, C. and Technische, J. S. (2019). Synchronization of Multiple USRP SDRs for Coherent Receiver Applications. 2019 Sixth International Conference on Software Defined Systems (SDS), IEEE, 1116.10.1109/SDS.2019.8768634CrossRefGoogle Scholar
Kutkov, O. (2021). 1PPS Distribution Circuit. https://olegkutkov.me/2021/02/28/1pps-distribution-circuit/. Accessed 14 December 2022.Google Scholar
Laakso, M., Rajamäki, R., Wichman, R. and Koivunen, V. (2021). Phase-Coherent Multichannel SDR-Sparse Array Beamforming. 2020 28th European Signal Processing Conference (EUSIPCO), IEEE, 18561860.10.23919/Eusipco47968.2020.9287664CrossRefGoogle Scholar
Leclère, J., Landry, R., and Botteron, C. (2018). Comparison of L1 and L5 Bands GNSS Signals Acquisition. Sensors, 18(9), 2779.10.3390/s18092779CrossRefGoogle ScholarPubMed
Ossmann, M. (2022). Hack RF. https://greatscottgadgets.com/hackrf/. Accessed 14 December 2022.Google Scholar
Pascual, D. (2022). danipascual/GNSS-matlab, GitHub. https://github.com/danipascual/GNSS-matlab. Accessed 14 December 2022.Google Scholar
Racelogic (2022). LabSat 3 Wideband. https://www.labsat.co.uk/index.php/en/products/labsat-3-wideband. Accessed 14 December 2022.Google Scholar
Rodriguez, J. A. A. (2008). On Generalized Signal Waveforms for Satellite Navigation. Ph.D. thesis, Universitätsbibliothek der Universität der Bundeswehr München.Google Scholar
Steigenberger, P., Thoelert, S. and Montenbruck, O. (2018). GNSS Satellite Transmit Power and its Impact on Orbit Determination. Journal of Geodesy, 92(6), 609624.10.1007/s00190-017-1082-2CrossRefGoogle Scholar
Tröster-Schmid, C. and Bednorz, T. (2016). Generating Multiple Phase Coherent Signals–Aligned in Phase and Time. Rohde & Schwarz GmbH & Co. KG, München.Google Scholar
Vagle, N., Broumandan, A., Jafarnia-Jahromi, A. and Lachapelle, G. (2016). Performance Analysis of GNSS Multipath Mitigation Using Antenna Arrays. The Journal of Global Positioning Systems, 14(1), 115.10.1186/s41445-016-0004-6CrossRefGoogle Scholar
Yao, Z., Lu, M. and Feng, Z. (2010). Quadrature Multiplexed BOC Modulation for Interoperable GNSS Signals. Electronics Letters, 46(17), 12341236.10.1049/el.2010.1693CrossRefGoogle Scholar