Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T03:52:14.556Z Has data issue: false hasContentIssue false

A comparison of postglacial arcellacean (“Thecamoebian”) and pollen succession in Atlantic Canada, illustrating the potential of arcellaceans for paleoclimatic reconstruction

Published online by Cambridge University Press:  20 May 2016

Francine M. G. Mccarthy
Affiliation:
1Department of Earth Sciences, Brock University, St. Catharines, Ontario, L2S 3A1
Eric S. Collins
Affiliation:
2Centre for Marine Geology, Dalhousie University, Halifax, Nova Scotia, B3H 3J5
John H. Mcandrews
Affiliation:
3Department of Botany, Royal Ontario Museum, and Departments of Botany and Geology, University of Toronto, Toronto, Ontario, M5S 2C6
Helen A. Kerr
Affiliation:
4Department of Fisheries and Oceans, Gulf Region, Moncton, New Brunswick E1C 9B6
David B. Scott
Affiliation:
2Centre for Marine Geology, Dalhousie University, Halifax, Nova Scotia, B3H 3J5
Franco S. Medioli
Affiliation:
2Centre for Marine Geology, Dalhousie University, Halifax, Nova Scotia, B3H 3J5

Abstract

Cores dating back to deglaciation were taken from three lakes in Atlantic Canada and analyzed for arcellaceans and pollen. Paleotemperatures and paleo-precipitation were calculated from the pollen data using transfer functions. A sudden warming is recorded by the pollen around 10,000 years B.P., followed by a general warming to the mid Holocene Hypsithermal, then by a decrease in temperature and increase in effective precipitation to the present. The three lakes, two in western Newfoundland and one in eastern Nova Scotia, contain similar late glacial (13-10 ka), early Holocene (10-8 ka), mid Holocene (8-4 ka), and late Holocene (4-0 ka) arcellacean assemblages. Immediately following retreat of the ice sheets, Centropyxis aculeata, Centropyxis constricta, Difflugia oblonga, Difflugia urceolata, and Difflugia corona were common. The latter part of the late glacial is characterized by sparse assemblages dominated by C. aculeata. The arcellacean record thus suggests a climatic reversal in Atlantic Canada between 11,500 and 10,000 years B.P., analogous to the Younger Dryas, although this is not recorded by the pollen. Species diversity increased sharply at the beginning of the Holocene, and D. oblonga is the dominant taxon in early Holocene sediments. Difflugia oblonga remained common through the mid Holocene, but percentages of C. aculeata were very low, and Pontigulasia compressa and Difflugia bacillifera peaked in abundance during the Hypsithermal. The late Holocene is characterized by a resurgence in C. aculeata at the expense of other taxa. The increase in Heleopera sphagni and Nebella collaris since 5,000 years B.P. at the two sites in southwestern Newfoundland reflects paludification in response to increased precipitation since the Hypsithermal. Because the changes in arcellacean assemblages are regionally synchronous in all three lakes and coincide with climatically driven vegetational successions indicated by the pollen record, arcellaceans appear to respond to climatic change, and thus may be useful paleoecological and paleolimnological indicators. With their quicker generation time, these protists may be better suited than pollen to recording short-lived phenomena, like the mid-Holocene Hypsithermal and the Younger Dryas reversal.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, W. 1866. Quarterly Journal of Microscopical Science, new series, 6:185188.Google Scholar
Arigo, R., Howe, S. E., and Webb, T. III. 1986. Climatic calibration of pollen data: an example and annotated computing instructions, p. 817849. In Berglund, B. E. (ed.), Handbook of Holocene Paleoecology and Paleohydrology. John Wiley, New York.Google Scholar
Bartlein, P. J., and Webb, T. III. 1985. Mean July temperature at 6000 yr B.P. in eastern North America: Regression equations for estimates from fossil-pollen data, p. 301342. In Harington, C. R. (ed.), Climatic Change in Canada 5: Critical Periods in the Quaternary Climatic History of Northern North America. Syllogeus No. 55.Google Scholar
Brookes, I. A. 1977. Geomorphology and Quaternary geology of Codroy Lowland and adjacent plateaus, southwest Newfoundland. Canadian Journal of Earth Sciences, 14:21012120.CrossRefGoogle Scholar
Campbell, I. A., and McAndrews, J. H. 1992. CANPLOT: A FORTRAN-77 program for plotting stratigraphic data on a postscript device. Computers and Geosciences, 18:309335.CrossRefGoogle Scholar
Carter, H. J. 1856. Notes on the freshwater Infusoria of the Island of Bombay: No. 1. Organisation. Annals and Magazine of Natural History, ser. 2, 18:221249.CrossRefGoogle Scholar
Carter, H. J. 1864. On freshwater Rhizopoda of England and India. Annals and Magazine of Natural History, ser. 3, 13:1839.CrossRefGoogle Scholar
Cash, J., and Hopkinson, J. 1909. The British freshwater Rhizopoda and Heliozoa: Volume II, Rhizopoda, Part II: Royal Society, London:1166.Google Scholar
Collins, E. S., McCarthy, F. M. G., Medioli, F. S., Scott, D. B., and Honig, C. A. 1990. Biogeographic distribution of modern thecamoebians in a transect along the eastern North American coast, p. 783792. In C. Hemleben and others (eds.), Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera. Kluwer Academic Publishers, Amsterdam.CrossRefGoogle Scholar
Corbet, S. A. 1973. An illustrated introduction to the testate rhizopods in Sphagnum, with special reference to the area around Malham Tarn, Yorkshire. Field Studies, 3:801838.Google Scholar
Dean, W. E. Jr. 1974. Determination of carbonate and organic matter in calcareous sediment and sedimentary rock by loss on ignition: a comparison with other methods. Journal of Sedimentary Petrology, 44:243248.Google Scholar
Decloitre, L. 1953. Recherches sur les Rhizopodes thécamoebiens d'A.O.F. (Suite). Faune du Lac Tamna (Senegal). Bulletin de l'Institut Françed' Afrique Noire, no. 31, 249 p.Google Scholar
Deflandre, G. 1929. Le genre Centropyxis Stein. Archiv fur Protistenkunde, 67:322375.Google Scholar
Ehrenberg, G. C. 1832. Uber die Entwicklung und Lebensdauer der Infusionsthiere, nebst ferneren Beitragen zu einer Vergleichung ihrer organischen Systeme: Konigliche Akademie der Wissenschaften zu Berlin Abhandlungen, 1831:1154.Google Scholar
Ehrenberg, G. C. 1840. (No title): Konigliche Preussiche Akademie der Wissenschaften zu Berlin Bericht, 1840:197210.Google Scholar
Ehrenberg, G. C. 1843. Verbreitung und Einfluss des mikroskopischen Lebens in Sud und Nord Amerika: Königliche Akademie der Wissenschaften zu Berlin Abhandlungen, 1841:291446.Google Scholar
Ehrenberg, G. C. 1848a. Fortgestzte Beobachtungen uber jetzt herrschende atmosphärische mikroskopisch Verhaltnisse: Bericht uber die zur Bekanntmachung geeigneten Verhandlungen der Königlichen Preussichen Akademie der Wissenschaften zu Berlin, 13:370381.Google Scholar
Ehrenberg, G. C. 1848b. Uber eigenthumliche auf dem Baumen des Urwaldes in Sud-Amerika zahlreich lebende Mikroskopische oft Kieselschalige Organismen: Königlichen Preussichen Akademie der Wissenschaften zu Berlin, 1848:213220.Google Scholar
Faegri, K., and Iversen, J. 1975. Textbook of Pollen Analysis (3rd edition). Munksgard, Copenhagen, 237 p.Google Scholar
Gajewski, K. 1988. Late Holocene climate changes in eastern North America estimated from pollen data. Quaternary Research, 29:255262.CrossRefGoogle Scholar
Grimm, E. C. 1987. CONISS: A FORTRAN-77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences, 13:1335.CrossRefGoogle Scholar
Heal, O. W. 1964. The abundance and micro-distribution of testate amoebae (Rhizopoda:Testacea) in Sphagnum. Oikos, 13:3547.CrossRefGoogle Scholar
Honig, C. A., and Scott, D. B. 1987. Postglacial stratigraphy and sea-level change in southwestern New Brunswick. Canadian Journal of Earth Sciences, 24:354364.CrossRefGoogle Scholar
Kerr, H. A. 1984. Arcellaceans in Eastern Canada: selected biostratigraphic and biological studies. Unpublished , Dalhousie University, Halifax, Nova Scotia, 49 p.Google Scholar
Lamarck, J. B. 1816. Histoire naturelle des animaux sans vertebres. Verdiere, Paris, tome 2:1568.Google Scholar
Leidy, J. 1874. Notice of some Rhizopods: Academy of Natural Sciences of Philadelphia Proceedings, ser. 3, 1874:155157.Google Scholar
Leidy, J. 1879. Freshwater Rhizopods of North America. United States Geological Survey of the Territories Report, 12:1324.Google Scholar
Livingstone, D. A. 1968. Some interstadial and postglacial pollen diagrams from eastern Canada. Ecological Monographs, 38:87125.CrossRefGoogle Scholar
McAndrews, J. H. 1984. Pollen analysis of the 1973 core from Devon Island Glaciers, Canada. Quaternary Research, 22:6876.CrossRefGoogle Scholar
McAndrews, J. H. 1994. Pollen diagrams from southern Ontario applied to archaeology. In MacDonald, R. and Warner, B. (eds), Great Lakes Archaeology and Palaeoecology: Exploring Interdisciplinary Initiatives for the Nineties. University of Waterloo. In press.Google Scholar
McAndrews, J. H., Berti, A. A., and Norris, G. 1973. Key to the Quaternary pollen and spores of the Great Lakes Region. Royal Ontario Museum Life Sciences Miscellaneous Publication, Toronto, Ontario. 61 p.CrossRefGoogle Scholar
McCarthy, F. 1984. Infraspecific variation in Arcellacea (Thecamoebians) from Eastern Canada and a selected biostratigraphic study. Unpublished , Dalhousie University, Halifax, Nova Scotia, 41 p.Google Scholar
Medioli, F. S., and Scott, D. B. 1983. Holocene Arcellacea (Thecamoebians) from Eastern Canada. Cushman Foundation for Foraminiferal Research, Special Publication No. 21, 63 p.Google Scholar
Medioli, F. S., and Scott, D. B. 1987. Lacustrine thecamoebians (mainly arcellaceans) as potential tools for paleolimnological interpretations. Palaeogeography, Palaeoclimatology and Palaeoecology, 62:361386.CrossRefGoogle Scholar
Medioli, F. S., Scott, D. B. and Abbott, B. H. 1987. A case study of protozoan intraclonal variability: taxonomic implications. Journal of Foraminiferal Research, 17:2847.CrossRefGoogle Scholar
Mott, R. J., Grant, D. R., Stea, R. R., and Occhietti, S. 1986. Late Glacial climatic oscillation in Atlantic Canada equivalent to the Allerod/younger Dryas event. Nature, 323:247250.CrossRefGoogle Scholar
Ogden, J. G. III. 1987. Vegetational and climatic history of Nova Scotia. I. Radiocarbon-dated pollen profiles from Halifax, Nova Scotia. Canadian Journal of Botany, 65:14821487.CrossRefGoogle Scholar
Patterson, R. T. and Fishbein, E. 1989. Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological research. Journal of Paleontology, 63:245248.CrossRefGoogle Scholar
Patterson, R. T., MacKinnon, K. D., Scott, D. B., and Medioli, F. S. 1985. Arcellaceans (“Thecamoebians”) in small lakes of New Brunswick and Nova Scotia: modern distribution and Holocene stratigraphic changes. Journal of Foraminiferal Research, 15:114137.CrossRefGoogle Scholar
Perty, M. 1949. Uber vertikale Verbreitung mikrokopische Lebensformen. Naturforschende Gesellschaft in Bern Mittheilungen, 1849:17–15.Google Scholar
Penard, E. 1890. Etudes sur les Rhizopodes d'eau douce: Memoires de la Societe de Physique et d'Histoire Naturelle de Geneve, 31:1230.Google Scholar
Rhumbler, L. 1895. Beitrage zur Kenntnis der Rhizopoden (Beitrag III, IV, und V). Zeitschrift fur Wissenschaftliche Zoologie, 61, no. 1:38110.Google Scholar
Rowe, J. S. 1972. Forest Regions of Canada. Canadian Forestry Service, Publication 1300.Google Scholar
Scott, D. B., and Medioli, F. S. 1983. Agglutinated rhizopods in Lake Erie: modern distribution and stratigraphic implications. Journal of Paleontology, 57:809820.Google Scholar
Scott, D. B., Mudie, P. J., Vilks, G., and Younger, C. D. 1984. Latest Pleistocene-Holocene paleoceanographic trends on the continental margin of eastern Canada: foraminiferal, dinoflagellate and pollen evidence. Marine Micropaleontology, 9:181218.CrossRefGoogle Scholar
Schonborn, W. 1963. Die Stratigraphie lebender Testaceen in Sphagnetum der Hochmoore. Limnologica, 1:315321.Google Scholar
Stein, S. F. N. von. 1859. Über die ihm aus eigener untersuchung bekannt gewordenen Suswasser-Rhizopoden. Königliche Böhmische Gesellschaft der Wissenschaften Abhandlungen, ser. 5, v. 10, Berichte der Sectionen:4143.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13:615621.Google Scholar
Thibaudeau, S. A., Medioli, F. S., and Scott, D. B. 1987. Carboniferous marginal-marine Rhizopods: a morphological comparison with recent correspondents. Abstract, Geological Society of America, Annual Meeting, Phoenix, p. 866.Google Scholar
Tolonen, K. 1986. Rhizopod analysis, p. 645666. In Berglund, B. E. (ed.), Handbook of Holocene Paleoecology and Paleohydrology. J. Wiley, New York.Google Scholar
Wallich, G. C. 1864. On the extent, and some of the principal causes, of structural variation among the difflugian rhizopods. Annals and Magazine of Natural History, ser. 3, 13:215245.CrossRefGoogle Scholar
Webb, T. III and Bryson, R. A. 1972. Late- and postglacial climate change in the northern Midwest, USA: Quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research, 2:70115.CrossRefGoogle Scholar
Wright, H. E. Jr. 1967. A square rod piston sampler for lake sediments. Journal of Sedimentary Petrology, 37:975976.CrossRefGoogle Scholar