Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T11:27:53.179Z Has data issue: false hasContentIssue false

Condensing lenses and shell microstructure in Corculum (Mollusca: Bivalvia)

Published online by Cambridge University Press:  20 May 2016

J. G. Carter
Affiliation:
Department of Geology, University of North Carolina at Chapel Hill, Chapel Hill 27599-3315
J. A. Schneider
Affiliation:
University of Michigan, Museum of Zoology, 1109 Geddes Ave., Ann Arbor, 48109-1079

Abstract

The microstructure of the non-window portions of the shell of Corculum cardissa resembles other Fraginae, with predominantly fibrous prismatic outer, branching crossed lamellar middle, and complex crossed lamellar inner layers. Both the anterior and posterior windows in its shell reflect reduced pigmentation and incursion of the outer shell layer, but the posterior windows involve deeper incursion plus reduction of the outer and middle sublayers of the outer shell layer and microstructural modification of the middle shell layer to enhance light transmission. The planoconvex shape of the posterior windows has more likely evolved to direct and focus light toward the deeper, zooxanthellae-rich gills and anterior mantle, than to merely disperse light.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter, J. G., Bandel, K., De Buffrénil, V., Carlson, S. J., Castanet, J., and Others. 1990. Glossary of Skeletal Biomineralization, p. 609671. In Carter, J. G., (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume I. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G., and Lutz, R. A. 1990. Part 2, Bivalvia (Mollusca), p. 528, Plates 1-121. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume II. Van Nostrand Reinhold, New York.Google Scholar
Kafanov, A. I., and Popov, S. V. 1977. On the system of Cenozoic Cardioidea (Bivalvia). Palaeontological Journal, 11(3):307314.Google Scholar
Kawaguti, S. 1950. Observations on the heart shell, Corculum cardissa (L.) and its associated zooxanthellae. Pacific Science, 4:4349.Google Scholar
Popov, S. V. 1977. Mikrostruktura rokovniy i sistematika kardiid. Akademiya Nauk SSSR, Trudy Paleontologicheskogo Instituta, 153, 124 p.Google Scholar
Popov, S. V., and Barskov, I. S. 1978. Shell structure in mollusks and its value in phylogeny and classification. Malacological Review, 11:152153.Google Scholar
Seilacher, A. 1972. Divaricate patterns in pelecypod shells. Lethaia, 5:325343.Google Scholar
Seilacher, A. 1974. Fabricational noise in adaptive morphology. Systematic Zoology, 22:451465.Google Scholar
Seilacher, A. 1990. Aberrations in bivalve evolution related to photo- and chemosymbiosis. Historical Biology, 3:289311.Google Scholar
Schneider, J. A. 1996. Phylogenetic relationships and morphological evolution of the subfamilies Clinocardiinae, Lymnocardiinae, Fraginae and Tridacninae (Bivalvia: Cardiidae). Malacologia, in press.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. 1942. The Oceans. Prentice-Hall, Englewood Cliffs, New Jersey, 1087 p.Google Scholar
Taylor, J. D., Kennedy, W.J., and Hall, A. 1973. The shell structure and mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea. Conclusions. Bulletin of the British Museum (Natural History), Zoology, 22(9):253294.Google Scholar
Vogel, K. 1975. Endosymbiotic algae in rudists? Palaeogeography, Palaeoclimatology and Palaeoecology, 17:327332.Google Scholar
Watson, M. E., and Signor, P. W. 1986. How a clam builds windows: shell microstructure in Corculum (Bivalvia: Cardiidae). The Veliger, 28:348355.Google Scholar
Winchell, A. N. 1942. Elements of Mineralogy. Prentice-Hall, Englewood Cliffs, New Jersey, 535 p.Google Scholar