Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T21:37:45.978Z Has data issue: false hasContentIssue false

Cranial Morphology of Theriosuchus sympiestodon (Mesoeucrocodylia, Atoposauridae) and the Widespread Occurrence of Theriosuchus in the Late Cretaceous of Europe

Published online by Cambridge University Press:  15 October 2015

Jeremy E. Martin
Affiliation:
School of Earth Sciences, University of Bristol, BS8 1RJ, UK,
Márton Rabi
Affiliation:
Institut für Geowissenschaften, University of Tübingen, Hölderlinstraße 12, 72074 Tübingen, Germany Department of Paleontology and MTA–ELTE Lendület Dinosaur Research Group, Eötvös Loránd University, Budapest, Hungary,
Zoltán Csiki-Sava
Affiliation:
Department of Geology, University of Bucharest, 010041 Bucharest, Romania, ;
Ştefan Vasile
Affiliation:
Department of Geology, University of Bucharest, 010041 Bucharest, Romania, ;

Abstract

We present a detailed morphological description of the type-locality cranial material of Theriosuchus sympiestodon Martin, Rabi, and Csiki, 2010 from the Maastrichtian Densuş-Ciula Formation of the Haţeg Basin, Romania together with new material of isolated cranial elements and teeth from various sites of the same general area. The recognition of several individuals of distinct sizes allows for an assessment of ontogenetic variation in this taxon. New material, consisting of isolated teeth and an incomplete maxilla with in situ teeth, coming from various late Campanian/early Maastrichtian sites in southern France is referable to ?Theriosuchus sp. and hints to a rare but widespread distribution of Theriosuchus in the Late Cretaceous European archipelago.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bojar, A.-V., Halas, S., Bojar, H.-P., Grigorescu, D., and Vasile, Ş. 2011. Upper Cretaceous volcanoclastic deposits from the Haţeg Basin, South Carpathians (Romania): K-Ar ages and intrabasinal correlation. Geochronometria, 38:182188.Google Scholar
Brinkmann, W. 1992. Die Krokodilier-fauna aus der Unter-Kreide (Ober-Barremium) von Uña (Provinz Cuenca, Spanien). Berliner Geowissenschaftliche Abhandlungen, 5:1123.Google Scholar
Buffetaut, E. 2005. Late Cretaceous vertebrates from the Saint-Chinian area (southern France): A review of previous research and an update on recent finds. Acta Palaeontologica Romaniae, 5:3948.Google Scholar
Buffetaut, E. and Le Loeuff, J. 1991. Late Cretaceous dinosaur faunas of Europe: Some correlation problems. Cretaceous Research, 12:159176.CrossRefGoogle Scholar
Buscalioni, A. D., Ortega, F., and Vasse, D. 1997. New crocodiles (Eusuchia: Alligatoroidea) from the Upper Cretaceous of southern Europe. Comptes Rendus de l'Académie des Sciences, Paris, 325:525530.Google Scholar
Buscalioni, A. D., Ortega, F., and Vasse, D. 1999. The Upper Cretaceous crocodilian assemblage from Laño (northcentral Spain): Implications in the knowledge of the finicretaceous european faunas. Estudios del Museo de Ciencias Naturales de Álava, 14:213233.Google Scholar
Buscalioni, A. D., Ortega, F., Weishampel, D. B., and Jianu, C. M. 2001. A revision of the crocodyliform Allodaposuchus precedens from the Upper Cretaceous of the Hateg Basin, Romania. Its relevance in the phylogeny of Eusuchia. Journal of Vertebrate Paleontology, 21:7486.CrossRefGoogle Scholar
Buscalioni, A. D. and Sanz, J. L. 1988. Phylogenetic relationships of the Atoposauridae (Archosauria, Crocodylomorpha). Historical Biology, 1:233250.Google Scholar
Clark, J. M. 1986. Phylogenetic relationships of the crocodylomorph archosaurs. Unpublished Ph.D. dissertation. University of Chicago at Chicago, 556 p.Google Scholar
Codrea, V., Vremir, M., Jipa, C., Godefroit, P., Csiki, Z., Smith, T., and Fărcaş, C. 2010. More than just Nopcsa's Transylvanian dinosaurs: A look outside the Haţeg Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 293:391405.Google Scholar
Csiki, Z., Grigorescu, D., Codrea, V., and Therrien, F. 2010. Taphonomic modes in the Maastrichtian continental deposits of the Haţeg Basin, Romania—palaeoecological and palaeobiological inferences. Palaeogeography, Palaeoclimatology, Palaeoecology, 293:375390.CrossRefGoogle Scholar
Delfino, M., Codrea, V., Folie, A., Godefroit, P., and Smith, T. 2008 a. A complete skull of Allodaposuchus precedens Nopcsa, 1928 (Eusuchia) and a reassessment of the morphology of the taxon based on the Romanian remains. Journal of Vertebrate Paleontology, 28:111122.CrossRefGoogle Scholar
Delfino, M., Martin, J. E., and Buffetaut, E. 2008 b. A new species of Acynodon (Crocodylia) from the upper cretaceous (Santonian–Campanian) of Villaggio del Pescatore, Italy. Palaeontology, 51:10911106.Google Scholar
Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M., Cadet, J. P., Crasquin, S., and Săndulescu, M. 2000. Atlas Peri-Tethys, Palaeogeographical Maps. CCGM/CGMW, Paris, 24 maps, 269 p.Google Scholar
Eaton, J. G., Cifelli, R. L., Hutchison, J. H., Kirkland, J. I., and Parrish, J. M. 1999. Cretaceous vertebrate faunas from the Kaiparowits Plateau, South-Central Utah, p. 345353. In Gillette, D. E. (ed.), Vertebrate Paleontology in Utah, Utah Geological Survey, Miscellaneous Publication 99–1.Google Scholar
Gaffney, E. S. and Meylan, P. A. 1992. The Transylvanian turtle Kallokibotion, a primitive cryptodire of Cretaceous age. American Museum Novitates, 3040:137.Google Scholar
Galton, P. M., 1996. Notes on Dinosauria from the Upper Cretaceous of Portugal. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1992:8390.Google Scholar
Garcia, G. and Pereda Suberbiola, X. 2003. A new species of Struthiosaurus (Dinosauria: Ankylosauria) from the Upper Cretaceous of Villeveyrac (Southern France). Journal of Vertebrate Paleontology, 23:156165.Google Scholar
Gmelin, J. F. 1789. Tom. I. Pars. III, p. 10331516. In Beer, G. E. (ed.), Caroli a Linné, Systema Naturae. Leipzig, Germany.Google Scholar
Gervais, P. 1871. Remarques au sujet des Reptiles provenant des calcaires lithographiques de Cirin, dans le Bugey, qui sont conservés au Musée de Lyon. Comptes Rendus Sommaire des Séances de la Société géologique de France, 73:603607.Google Scholar
Grigorescu, D. 1992. Nonmarine Cretaceous Formations of Romania, p. 142164. In Matter, N. J. and Chen, P.-J. (eds.), Aspects of Nonmarine Cretaceous Geology. China Ocean Press, Beijing.Google Scholar
Grigorescu, D., Garcia, G., Csiki, Z., Codrea, V., and Bojar, A. V. 2010. Uppermost Cretaceous megaloolithid eggs from the Haţeg Basin, Romania, associated with hadrosaur hatchlings: Search for explanation. Palaeogeography, Palaeoclimatology, Palaeoecology, 293:360374.Google Scholar
Groza, I. 1983. Rezultatele preliminare ale cercetărilor întreprinse de către Muzeul Judeţean Hunedoara - Deva în stratele cu dinosauri de la Sânpetru—Haţeg. Sargetia, 13:4966.Google Scholar
Joyce, W. G. 2007. Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 48:3102.Google Scholar
Joyce, W. G., Chapman, S. D., Moody, R. T. J., and Walker, C. A. 2011. The skull of the solemydid turtle Helochelydra nopcsai from the Early Cretaceous of the Isle of Wight (UK) and a review of Solemydidae. Special Papers in Palaeontology, 86:7597.Google Scholar
Lapparent de Broin, F. and Murelaga, X. 1999. Turtles from the Upper Cretaceous of Laño (Iberian Peninsula). Estudios del Museo de Ciencias Naturales de Álava, 14:135211.Google Scholar
Lapparent de Broin, F., Murelaga Bereikua, X., and Codrea, V. 2004. Presence of Dortokidae (Chelonii, Pleurodira) in the earliest Tertiary of the Jibou Formation, Romania: Paleobiogeographical implications. Acta Palaeontologica Romaniae, 4:203215.Google Scholar
Lauprasert, K., Laojumpon, C., Saenphala, W., Cuny, G., Thirakhupt, K., and Suteethorn, V. 2011. Atoposaurid crocodyliforms from the Khorat Group of Thailand: First record of Theriosuchus from Southeast Asia. Palaontologische Zeitschrift, 85:3747.Google Scholar
Le Loeuff, J. 1991. The Campano–Maastrichtian vertebrate faunas from southern Europe and their relationships with other faunas in the world: Palaeobiogeographical implications. Cretaceous Research, 12:93114.Google Scholar
Le Loeuff, J. 2012. Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: How many dinosaur species went extinct at the Cretaceous–Tertiary boundary? Bulletin de la Sociéte Géologique de France, 183:547559.Google Scholar
Martin, J. E. 2007. New material of the Late Cretaceous globidontan Acynodon iberoccitanus (Crocodylia) from Southern France. Journal of Vertebrate Paleontology, 27:362372.CrossRefGoogle Scholar
Martin, J. E. 2010. Allodaposuchus Nopcsa, 1928 (Crocodylia, Eusuchia), from the Late Cretaceous of southern France and its relationships to Alligatoroidea. Journal of Vertebrate Paleontology, 30:756767.Google Scholar
Martin, J. E. and Buffetaut, E. 2005. An overview of the Late Cretaceous crocodilian assemblage from Cruzy, southern France. Kaupia, 14:3339.Google Scholar
Martin, J. E., Csiki, Z., Grigorescu, D., and Buffetaut, E. 2006. Late Cretaceous crocodilian diversity in Haţeg Basin, Romania. Hantkeniana, 5:3137.Google Scholar
Martin, J. E. and Delfino, M. 2010. Recent advances in the comprehension of the biogeography of Cretaceous European eusuchians. Palaeogeography, Palaeoclimatology, Palaeoecology, 293:406418.Google Scholar
Martin, J. E., Rabi, M., and Csiki, Z. 2010. Survival of Theriosuchus (Mesoeucrocodylia: Atoposauridae) in a Late Cretaceous archipelago: A new species from the Maastrichtian of Romania. Naturwissenschaften, 97:845854.Google Scholar
Mook, C. C. 1921. Individual and age variations in the skulls of Recent Crocodilia. Bulletin of the American Museum of Natural History, 44:5166.Google Scholar
Nopcsa, F. 1923. On the geological importance of the primitive reptilian fauna of the uppermost Cretaceous; with a description of a new tortoise (Kallokibotion). Quarterly Journal of the Geological Society of London, 79:100116.CrossRefGoogle Scholar
Nopcsa, F. 1929. Dinosaurierreste aus Siebenbürgen V. Geologica Hungarica, Ser. Palaeontologica, 4:176.Google Scholar
Ősi, A. 2005. Hungarosaurus tormai, a new ankylosaur (Dinosauria) from the Upper Cretaceous of Hungary. Journal of Vertebrate Paleontology, 25:370383.Google Scholar
Ősi, A., 2013. The evolution of jaw mechanism and dental function in heterodont crocodyliforms. Historical Biology, doi:10.1080/08912963.2013.777533.CrossRefGoogle Scholar
Ősi, A., Clark, J. M., and Weishampel, D. B. 2007. First report on a new basal eusuchian crocodyliform with multicusped teeth from the Upper Cretaceous (Santonian) of Hungary. Neues Jarhbuch für Geologie und Paläontologie Abhandlungen, 243:169177.Google Scholar
Ősi, A. and Prondvai, E. 2013 Sympatry of two ankylosaurs (Hungarosaurus and cf. Struthiosaurus) in the Santonian of Hungary. Cretaceous Research, 44:3038.Google Scholar
Ősi, A., Prondvai, E., Butler, R., and Weishampel, D. B. 2012 a. Phylogeny, histology and inferred body size evolution in a new rhabdodontid dinosaur from the Late Cretaceous of Hungary. PLoS ONE, 7, e44318.Google Scholar
Ősi, A., Rabi, M., Makádi, L., Szentesi, Z., Botfalvai, G., and Gulyás, P. 2012 b. The Late Cretaceous continental vertebrate fauna from Iharkút (Western Hungary, Central Europe): A review, p. 533570. In Godfroit, P. (ed.), Tribute to Charles Darwin and the Bernissart Iguanodons: New Perspectives of Vertebrate Evolution and Early Cretaceous Ecosystems. Indiana University Press, Bloomington.Google Scholar
Owen, R. 1879. Monograph on the fossil reptilia of the Wealden and Purbeck Formations. Supplement IX, Crocodilia (Goniopholis, Brachydectes, Nannosuchus, Theriosuchus and Nuthetes), p 19. Palaeontographical Society, London.Google Scholar
Panaiotu, C. G. and Panaiotu, C. E. 2010. Palaeomagnetism of the Upper Cretaceous Sânpetru Formation (Haţeg Basin, South Carpathians). Palaeogeography, Palaeoclimatology, Palaeoecology, 293:343352.Google Scholar
Pereda Suberbiola, X. 1999. Ankylosaurian dinosaur remains from the Upper Cretaceous of Laño (Iberian Peninsula). Estudios del Museo de Ciencias Naturales de Álava, 14:273288.Google Scholar
Pereda-Suberbiola, X. 2009. Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: A review. Bulletin de la Société Géologique de France, 180:5771.Google Scholar
Pol, D., Turner, A. H., and Norell, M. A. 2009. Morphology of the late Cretaceous crocodylomorph Shamosuchus djadochtaensis and a discussion of neosuchian phylogeny as related to the origin of Eusuchia. Bulletin of the American Museum of Natural History, 324:1103.Google Scholar
Prasad, G. V. R. and de Lapparent de Broin, F. 2002. Late Cretaceous crocodile remains from Naskal (India): Comparisons and biogeographic affinities. Annales de Paléontologie, 88:1971.CrossRefGoogle Scholar
Puértolas-Pascual, E., Canudo, J. I., and Moreno-Azanza, M. 2013. The eusuchian crocodylomorph Allodaposuchus subjuniperus sp. nov., a new species from the latest Cretaceous (upper Maastrichtian) of Spain. Historical Biology, doi:10.1080/08912963.2012.763034.Google Scholar
Rabi, M. and Ösi, A. 2010. Specialized basal eusuchian crocodilians in the Late Cretaceous of Europe: Evidence for the hylaeochampsid affinities of Acynodon and its implication on alligatoroid biogeography. The 8th meeting of the European Association of Vertebrate Paleontologists, Aix-en-Provence, Abstract Volume, p. 71.Google Scholar
Rabi, M., Tong, H., and Botfalvai, G. 2012. A new species of the side-necked turtle Foxemys (Pelomedusoides: Bothremydidae) from the Late Cretaceous of Hungary and the historical biogeography of the Bothremydini. Geological Magazine, 149:662674.Google Scholar
Rabi, M., Vremir, M., and Tong, H. 2013. Preliminary overview of Late Cretaceous turtle diversity in eastern Central Europe (Austria, Hungary, and Romania), p. 307336. In Brinkman, D. B., Holroyd, P. A., and Gardner, J. D. (eds.), Morphology and Evolution of Turtles. Springer, Dordrecht.Google Scholar
Schwarz, D. and Salisbury, S. W. 2005. A new species of Theriosuchus (Atoposauridae, Crocodylomorpha) from the Late Jurassic (Kimmeridgian) of Guimarota, Portugal. Geobios, 38:779802.Google Scholar
Sereno, P. C. and Larsson, H. C. E. 2010. Cretaceous crocodyliforms from the Sahara. Zookeys, 28:1143.Google Scholar
Tong, H., Gaffney, E. S., and Buffetaut, E. 1998. Foxemys, a new side-necked turtle (Bothremydidae: Pelomedusoides) from the Late Cretaceous of France. American Museum Novitates, 3251:119.Google Scholar
Vasile, Ş. and Csiki, Z. 2010. Comparative paleoecological analysis of some microvertebrate fossil assemblages from the Haţeg Basin, Romania. Oltenia. Studii şi comunicări. Ştiinţele Naturii, 26:315322.Google Scholar
Weishampel, D. B., Csiki, Z., Benton, M. J., Grigorescu, D., and Codrea, V. 2010. Palaeobiogeographic relationships of the Haţeg biota—between isolation and innovation. Palaeogeography, Palaeoclimatology, Palaeoecology, 293:419437.Google Scholar
Weishampel, D. B., Jianu, C. M., Csiki, Z., and Norman, D. B. 2003. Osteology and phylogeny of Zalmoxes (n. g.), an unusual euornithopod dinosaur from the latest Cretaceous of Romania. Journal of Systematic Palaeontology, 1:65123.Google Scholar
Whetstone, K. N. and Whybrow, P. J. 1983. A ‘cursorial’ crocodilian from the Triassic of Lesotho (Basutoland), southern Africa. Occasional Papers of the Museum of Natural History, University of Kansas, 106:137.Google Scholar
Wu, X.-C., Brinkmann, D. B., and Russell, A. P. 1996. Sunosuchus junggarensis sp. nov. (Archosauria: Crocodyliformes) from the Upper Jurassic of Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences, 33:606630.CrossRefGoogle Scholar
Wu, X.-C., Cheng, Z.-W., and Russell, A. P. 2001 a. Cranial anatomy of a new crocodyliform (Archosauria: Crocodylomorpha) from the Lower Cretaceous of Song-Liao Plain, northeastern China. Canadian Journal of Earth Sciences, 38:16531663.Google Scholar
Wu, X.-C., Russell, A. P., and Cumbaa, S. L. 2001 b. Terminonaris (Archosauria: Crocodyliformes): New material from Saskatchewan, Canada, and comments on its phylogenetic relationships. Journal of Vertebrate Paleontology, 21:492514.Google Scholar