Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T21:44:03.087Z Has data issue: false hasContentIssue false

Distinguishing Agromyzidae (Diptera) Leaf Mines in the Fossil Record: New Taxa from the Paleogene of North America and Germany and Their Evolutionary Implications

Published online by Cambridge University Press:  20 May 2016

Isaac S. Winkler
Affiliation:
1Department of Entomology, North Carolina State University, Raleigh, 27695-7613 USA, 2Department of Entomology, University of Maryland, College Park, 20742 USA
Conrad C. Labandeira
Affiliation:
2Department of Entomology, University of Maryland, College Park, 20742 USA 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20213-7012 USA
Torsten Wappler
Affiliation:
4Steinmann Institut für Geologie, Mineralogie, Paläontologie, Universität Bonn, Nussallee 8, D-53115 Bonn, Germany
Peter Wilf
Affiliation:
5Department of Geosciences, Pennsylvania State University, University Park, 16802 USA

Abstract

Fossilized leaf mines and other traces of phytophagous insects provide a unique window into ecological and evolutionary associations of the past. Leaf-mining flies (Diptera: Agromyzidae) are an important component of the recent leaf-mining fauna, but their fossil record is sparse compared to other mining insect lineages; many putative agromyzid body fossils and traces are dubiously assigned. Agromyzid leaf mines often can be distinguished from those of other insects by the presence of an intermittent, fluidized frass trail that may alternate between the sides of the mine. Here, we describe two new Paleogene leaf mine fossils, Phytomyzites biliapchaensis Winkler, Labandeira and Wilf n. sp. from the early Paleocene of southeastern Montana, USA, occurring in leaves of Platanus raynoldsii (Platanaceae); and Phytomyzites schaarschmidti Wappler n. sp., from the middle Eocene of Messel, Germany, occurring in leaves of Toddalia ovata (Rutaceae). These fossils both exhibit frass trails indicative of an agromyzid origin, and P. biliapchaensis also exhibits associated stereotypical marks identical to damage caused by feeding punctures of extant adult female Agromyzidae prior to oviposition. Phytomyzites biliapchaensis represents the earliest confirmed record of Agromyzidae, and one of the earliest records for the large dipteran clade Schizophora. Plant hosts of both species belong to genera that are no longer hosts of leaf-mining Agromyzidae, suggesting a complex and dynamic history of early host-plant associations and, for the early Paleocene example, an evolutionary, possibly opportunistic colonization in the midst of the ecological chaos following the end-Cretaceous event in North America.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barreda, V. and Palazzesi, L. 2007. Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Botanical Review, 73:3150.CrossRefGoogle Scholar
Beiger, M. 2004. Owady Minujące Polski: Klucz do Oznaczania na Podstawie Min. Bogucki Wydawnictwo Naukowe, Poznan, Poland, 894 p. (in Polish)Google Scholar
Belt, E. S., Hartman, J. H., Diemer, J. A., Droeger, T. J., Tibert, N. E., and Curran, H. A. 2004. Unconformities and age relationships, Tongue River and older members of the Fort Union Formation (Paleocene), western Williston Basin, U.S.A. Rocky Mountain Geology, 39:13140.Google Scholar
Benavent-Corai, J., Martinez, M., and Jiménez Peydró, R. 2005. Catalogue of the hosts-plants of the world Agromyzidae (Diptera). Bolletino di Zoologia agraria e di Bachicoltura. Serie II, 37 (Supplementum), ii + 97 p.Google Scholar
Berger, W. 1949. Lebensspuren schmarotzender Insekten an jungtertiären Laubblattern. Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Sitzungsberichte. Abteilung I, Biologie, Mineralogie, Erdkunde und verwandte Wissenschaften, 158:789792.Google Scholar
Blagoderov, V. A., Lukashevich, E. D., and Mostovski, M. B. 2002. Order Diptera Linné, 1758. The True flies (=Muscida Laicharting, 1781), p. 227240. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic, Dordrecht.Google Scholar
Leafminers, British. 2009. www.leafmines.co.uk. [multiple contributors]Google Scholar
Cockerell, T.D.A. 1924. An ancestor of the Agromyzidae. Entomologist, 57:199201.Google Scholar
Connor, E. F. and Taverner, M. P. 1997. The evolution and adaptive significance of the leaf-mining habit. Oikos, 79:625.CrossRefGoogle Scholar
Crane, P. R. and Jarzembowski, E. A. 1980. Insect leaf mines from the Palaeocene of southern England. Journal of Natural History, 14:629636.Google Scholar
Crane, P. R., Manchester, S. R., and Dilcher, D. L. 1988. Morphology and phylogenetic significance of the angiosperm Platanites hebridicus from the Palaeocene of Scotland. Palaeontology, 31:503517.Google Scholar
Csóka, G. 2003. Leaf mines and leaf miners. Hungarian Forest Research Institute. Erdészeti Turományos Intézet, Agroinform Kiadó, Budapest, 192 p. (see alsohttp://www.forestpests.org/leafminers/)Google Scholar
Davis, D. R. 1989. Generic revision of the Opostegidae, with a synoptic catalog of the world's species (Lepidoptera: Nepticuloidea). Smithsonian Contributions to Zoology, Number 478, 197.Google Scholar
Dempewolf, M. 2001. Larvalmorphologie und Phylogenie der Agromyzidae (Diptera). Unpublished Ph.D. Dissertation, University of Bielefeld, Germany, 256 p. (http://bieson.ub.unibielefeld.de/volltexte/2003/162/pdf/diss.pdf)Google Scholar
Deonier, D. L. 1971. A systematic and ecological study of Nearctic Hydrellia (Diptera: Ephydridae). Smithsonian Contributions to Zoology, Number 68, 147 p.Google Scholar
Diemer, J. A. and Belt, E. S. 1991. Sedimentology and paleohydraulics of the meandering river systems of the Fort Union Formation, southeastern Montana. Sedimentary Geology, 75:85108.CrossRefGoogle Scholar
Ehrlich, P. R. and Raven, P. H. 1964. Butterflies and plants: a study in coevolution. Evolution, 18:586608.Google Scholar
Ellis, W. N. 2007. Dutch leafminers. http://www.bladmineerders.nl/index.htmGoogle Scholar
Evanoff, E., McIntosh, W. C., and MuRPHEY, P. C. 2001. Stratigraphic summary and 40Ar/39Ar geochronology of the Florissant Formation, Colorado. Proceedings of the Denver Museum of Nature and Science, 4:116.Google Scholar
Evenhuis, N. L. 1994. Catalogue of the Fossil Flies of the World (Insecta: Diptera). Backhuys, Leiden, 600 p. (http://hbs.bishopmuseum.org/fossilcat/)Google Scholar
Fallén, C. F. 1810. Specimen entomologicum novam Diptera disponendi methodum exhibens. Berligianus, Lundae, 26 p.Google Scholar
Feeny, P. 1975. Biochemical coevolution between plants and their insect herbivores, p. 319. In Gilbert, L. E. and Raven, P. H. (eds.), Coevolution of Insects and Plants. University of Texas Press, Austin.Google Scholar
Felder, M. and Harms, F.-J. 2004. Lithologie und genetische Interpretationen der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen. Courier Forschungsinstitut Senckenberg, 252:151203.Google Scholar
Geissert, F., Nötzold, T., and Süss, H. 1981. Pflanzenfossilien und Palaeophytobia salicaria Süss, eine neue fossile Minierfliege (Agromyzidae, Diptera) aus dem Pliozän des Elsaß. Mitteilungen des badischen Landesvereins für Naturkunde und Naturschutz, neue Folge, 12:221231.Google Scholar
Givulesçu, R. 1984. Pathological elements on fossil leaves from Chiuzbaia (galls, mines and other insect traces). Dări de Seamă ale Sedintelor. 3. Paleontologie 68(1981):123133, pls. I-VI.Google Scholar
Goeppert, H. R. 1855. Die Tertiäre Flora von Schossnitz in Schlesien. Heynsche Buchhandlung (E. Remer), Görlitz, xviii + 52 p., Taf. I-XXVI.Google Scholar
Graham, A. 1999. Late Cretaceous and Cenozoic history of North American vegetation. Oxford University Press, Oxford, 350 p.Google Scholar
Grambast-Fessart, N. 1966. IV contribution a l'étude des flores tertiaires des régions provencales et alpines: deux bois nouveaux de dicotylédones du pontien de Castellane. Mémoires de la Société Géologique de France (nouv. Ser.), 105:130146.Google Scholar
Gregor, H. J. 1979. Systematics, biostratigraphy and paleoecology of the genus Toddalia Jussieu (Rutaceae) in the European Tertiary. Review of Palaeobotany and Palynology, 28:311363.Google Scholar
Grimaldi, D. A. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86:373406.Google Scholar
Grimaldi, D. A., Beck, C. W., and Boon, J. J. 1989. Occurrence, chemical characteristics, and paleontology of the fossil resins from New Jersey. American Museum Novitates, Number 2948, 28 p.Google Scholar
Grimaldi, D. A. and Engel, M. S. 2005. Evolution of the Insects. Cambridge University Press, Cambridge, Massachusetts, 755 p.Google Scholar
Hendel, F. 1931-1936. 59. Agromyzidae. In Lindner, E. (ed.), Die Fliegen der Palaearktischen Region, VI, 2. Stuttgart, Germany, i-xii+570 pp., Taf. I-XVI.Google Scholar
Hennig, W. 1965. Die Acalyptratae des baltischen Bernsteins und ihre Bedeutung für die Erforschung der phylogenetischen Entwicklung dieser Dipteren-Gruppe. Stuttgarter Beiträge zur Naturkunde, 145:1215.Google Scholar
Hering, M. 1930. Eine Agromyziden-Mine aus dem Tertiär. (Dipt. Agromyz.). Deutsche Entomologische Zeitschrift, 1930:6364.Google Scholar
Hering, E. M. 1951. Biology of the Leaf Miners. Dr. W. Junk, 's-Gravenhage, The Netherlands, 420 p.Google Scholar
Hering, E. M. 1957. Bestimmungstabellen der Blattminen von Europa. Dr. W. Junk, 's-Gravenhage, The Netherlands, 1185 p. (Vol. 1-2) + 221 p. (Vol. 3).Google Scholar
Jarzembowski, E. A. 1989. A century plus of fossil insects. Proceedings of the Geologists' Association, 100:433449.Google Scholar
Johnson, K. R. 2002. The megaflora of the Hell Creek and lower Fort Union formations in the western Dakotas: vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression. Geological Society of America Special Paper, 361:329391.Google Scholar
Johnson, K. R. and Ellis, B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science, 296:23792383.CrossRefGoogle ScholarPubMed
Kozlov, M. V. 1988. Paleontology of lepidopterans and problems in the phylogeny of the order Papilionida, p. 1669, pls. 1-4. In Ponomarenko, A. G. (ed.), Cretaceous Biocoenotic Crisis in the Evolution of Insects. Academy of Sciences, Moskow. (in Russian)Google Scholar
Krassilov, V. 2007. Mines and galls on fossil leaves from the Late Cretaceous of southern Negev, Israel. African Invertebrates, 48:1322.Google Scholar
Krassilov, V. 2008a. Traumas on fossil leaves from the Cretaceous of Israel, p. 9187. In Krassilov, V. and Ranitsyn, A. (eds.), Plant-Arthropod Interactions in the Early Angiosperm History: Evidence from the Cretaceous of Israel. Pensoft, Sofia and Brill, Leiden.Google Scholar
Krassilov, V. 2008b. Mine and gall predation as top down regulation in the plant-insect systems from the Cretaceous of Negev, Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 261:261269.Google Scholar
Kräusel, R. and Schönfeld, G. 1925. Fossile Hölzer aus der Braunkohle von Süd-Limburg. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 38:253289.Google Scholar
Kumada, T. 1984. Insects forming pith flecks in broad-leaved trees. Northern Forestry, 36:120129. (in Japanese)Google Scholar
Labandeira, C. C. 1998a. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26:329377.Google Scholar
Labandeira, C. C. 1998b. Plant-insect associations from the fossil record. Geotimes, 43(9):1824.Google Scholar
Labandeira, C.C. 2002. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: a preliminary report. Rocky Mountain Geology, 37:3159.Google Scholar
Labandeira, C. C. 2005. Fossil history and evolutionary ecology of Diptera and their associations with plants, p. 217273. In Yeates, D. K. and Wiegmann, B. M. (eds.), The Evolutionary Biology of Flies. Columbia University Press, New York.Google Scholar
Labandeira, C. C. 2006a. The four phases of plant-arthropod associations in deep time. Geologica Acta, 4:409438.Google Scholar
Labandeira, C. C. 2006b. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Systematics and Phylogeny, 64:5394.Google Scholar
Labandeira, C. C. and Anderson, J. M. 2005. Insect leaf-mining in Late Triassic gymnospermous floras from the Molteno Formation of South Africa. Geological Society of America, Abstracts with Programs, 37:15.Google Scholar
Labandeira, C. C., Dilcher, D. L., Davis, D. R., and Wagner, D. L. 1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Academy of Sciences, U.S.A., 91:1227012282.Google Scholar
Labandeira, C. C., Johnson, K. R., and Lang, P. 2002a. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound, p. 297327. In Hartman, J. H., Johnson, K. R., and Nichols, D. J. (eds.), The Hell Creek Formation of the Northern Great Plains. Geological Society of America Special Paper, 361.Google Scholar
Labandeira, C. C., Johnson, K. R., and Wilf, P. 2002b. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences, U.S.A., 99:20612066.Google Scholar
Labandeira, C. C., Wilf, P., Johnson, K. R., and Marsh, F. 2007. Guide to Insect (and other) Damage Types on Compressed Plant Fossils. Version 3.0. Smithsonian Institution, Washington, D.C., 25 p. (http://paleobiology.si.edu/pdfs/insectDamageGuide.pdf)Google Scholar
Lang, P. J. 1996. Fossil Evidence for Patterns of Leaf-feeding from the Late Cretaceous and Early Tertiary. Unpublished , , 329 p.Google Scholar
Lang, P. J., Scott, A. C., and Stephenson, J. 1995. Evidence of plant-arthropod interactions from the Eocene Branksome Sand Formation, Bournemouth: introduction and description of leaf mines. Tertiary Research, 15:145174.Google Scholar
Lopez-Vaamonde, C., Wikström, N., Labandeira, C., Godfray, H. C. J., Goodman, S. J., and Cook, J. M. 2006. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. Journal of Evolutionary Biology, 19:13141326.Google Scholar
Magallón, S., Crane, P. R., and Herendeen, P. S. 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Annals of the Missouri Botanical Garden, 86:297372.CrossRefGoogle Scholar
Manchester, S. R. 1986. Vegetative and reproductive morphology of an extinct plane tree (Platanaceae) from the Eocene of Western North America. Botanical Gazette, 147:200226.Google Scholar
Manchester, S. R. and Dilcher, D. L. 1997. Reproductive and vegetative morphology of Polyptera (Juglandaceae) from the Paleocene of Wyoming and Montana. American Journal of Botany, 84:649663.Google Scholar
McAlpine, J. F. 1970. First record of calypterate flies in the Mesozoic era (Diptera: Calliphoridae). Canadian Entomologist, 102:342346.Google Scholar
Melander, A. L. 1949. A report on some Miocene Diptera from Florissant, Colorado. American Museum Novitates, 1407:163.Google Scholar
Mertz, D. F. and Renne, P. R. 2005. A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. Courier Forschungsinstitut Senckenberg, 255:6775.Google Scholar
Needham, J. G., Frost, S. W., and Tothill, J. D. 1928. Leaf-mining insects. Williams and Wilkins, Baltimore, 351 p. (http://www.biodiversitylibrary.org/bibliography/6488)Google Scholar
Newberry, J. S. 1868. Notes on the later extinct floras of North America with descriptions of some new species of fossil plants from the Cretaceous and Tertiary strata. Annals of the New York Lyceum of Natural History, 9:176.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular land plant diversification: an analysis at the species level, p. 97128. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
Nowakowski, J. T. 1962. Introduction to a systematic revision of the family Agromyzidae (Diptera) with some remarks on host plant selection by these flies. Annales zoologici (Warszawa), 28:67183.Google Scholar
Opler, P. A. 1973. Fossil lepidopterous leaf mines demonstrate the age of some insect-plant relationships. Science, 179:13211323.Google Scholar
Parrella, M. P. 1987. Biology of Liriomyza. Annual Review of Entomology, 32:201224.Google Scholar
Poinar, G. O. 1992. Life in Amber. Stanford University Press, Stanford, California, 368 p.Google Scholar
Powell, J. A., Mitter, C., and Farrell, B. 1998. Evolution of larval feeding habits in Lepidoptera, p. 4034422. In Kristensen, N. P. (ed.), Handbook of Zoology, Lepidoptera, Volume 1: Systematics and Evolution. W. de Gruyter, Berlin.Google Scholar
Quiévreaux, F. 1934. Sur un niveau fossilifère du bassin potassique oligocène du Haut-Rhin. Compte rendu hebdomadaire de l'Academie des Sciences, Paris, 199:877879.Google Scholar
Quiévreaux, F. 1935. Esquisse du monde vivant sur les rives de la lagune potassique. Bulletin de la Société industrielle de Mulhouse, 101:161–87, pl. I-V.Google Scholar
Rohdendorf, B. 1974. The historical development of Diptera. Moore, J. E. and Thiele, I (trans.), Hocking, B. H., Oldroyd, H., and Ball, G. E. (eds.). University of Alberta Press, Edmonton, 360 p. (originally published in Russian, 1964)Google Scholar
Rozefelds, A. C. 1985. The first records of fossil leaf mining from Australia. Records of the New Zealand Geological Survey, 9:8081.Google Scholar
Rozefelds, A. C. and Sobbe, I. 1987. Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of south-eastern Queensland, Australia. Alcheringa, 11:443482.Google Scholar
Scheffer, S. J., Winkler, I. S., and Wiegmann, B. M. 2007. Phylogenetic relationships within the leaf-mining flies (Diptera: Agromyzidae) inferred from sequence data from multiple genes. Molecular Phylogenetics and Evolution, 42:756775.Google Scholar
Scheirs, J., de Bruyn, L., and Verhagen, R. 2000. Optimization of adult performance determines host choice in a grass miner. Proceedings of the Royal Society of London, Series B, 267:20652069.Google Scholar
Scheirs, J., Vandevyvere, I., and de Bruyn, L. 1997. Influence of monocotyl leaf anatomy on the feeding pattern of a grass-mining agromyzid (Diptera). Annals of the Entomological Society of America, 90:646654.Google Scholar
Schulz, R., Harms, F. J., and Felder, M. 2002. Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Zeitschrift für Angewandte Geologie, 4:917.Google Scholar
Scott, A. C., Anderson, J. M., and Anderson, H. M. 2004. Evidence of plant-insect interactions in the Upper Triassic Molteno Formation of South Africa. Journal of the Geological Society, London, 161:401410.Google Scholar
Sehgal, V. K. 1971. Biology and host-plant relationships of an oligophagous leaf miner Phytomyza matricariae Hendel (Diptera: Agromyzidae). Quaestiones Entomologicae, 7:255280.Google Scholar
Sittig, W. 1927. Blattminierende Insektenlarven. Natur und Museum, 57:348350.Google Scholar
Solomon, J. D. 1995. Guide to insect borers of North American broadleaf trees and shrubs. Agriculture Handbook No. 706. U.S. Department of Agriculture, Forest Service, Washington, DC, 735 p.Google Scholar
Smedes, H. W. and Prostka, H. J. 1972. Stratigraphic framework of the Absaroka volcanic supergroup in the Yellowstone National Park region. U.S. Geological Survey Professional Paper, 729C, 33 p.Google Scholar
Spencer, K. A. 1973. Agromyzidae (Diptera) of Economic Importance. Series Entomologica 9. Dr. W. Junk, The Hague, 418 p.Google Scholar
Spencer, K. A. 1976. The Agromyzidae (Diptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, Vol. 5. Scandinavian Science Press, Klampenborg, Denmark, 606 p.Google Scholar
Spencer, K. A. 1990. Host Specialization in the World Agromyzidae (Diptera). Kluwer Academic Publishers, Dordrecht, 444 p.Google Scholar
Spencer, K. A. and Martinez, M. 1987. Additions and corrections to the Agromyzidae section of the catalogue of Palaearctic Diptera (Papp, 1984). Annales de la Société entomologique de France, n.S., 23:253271.Google Scholar
Straus, A. 1967. Zur Paläontologie des Pliozäns von Willershausen. Berichte der Naturhistorischen Gesellschaft Hannover, 111:1524.Google Scholar
Straus, A. 1977. Gallen, Minen und andere Frasspuren im Pliozän von Willershausen am Harz. Verhandlungen des Botanischen Vereins der Provinz Brandenburg, 113:4380.Google Scholar
Strömberg, C. A. E. 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences, U.S.A., 102:1198011984.Google Scholar
Süss, H. 1979. Durch Protophytobia cupressorum gen. nov., sp. nov. (Agromyzidae, Diptera) verursachte Markflecke in einem Holz von Juniperoxylon aus dem Tertiär von Süd-Limburg (Niederlande) und der Nachweis von Markflecken in einer rezenten Callitris-Art. Feddes Repertorium, 90:165172.Google Scholar
Süss, H. 1980. Fossile Kambium-Minierer der Familie Agromyzidae (Diptera) in tertiären Laub- und Nadelholzresten. Zeitschrift für Geologische Wissenschaften, 8:12171225.Google Scholar
Süss, H. and Müller-Stoll, W.R. 1975. Durch Palaeophytobia platani n. g., n. sp. (Agromyzidae, Diptera) verursachte Markflecken im Holz fossiler Platanen aus dem ungarischen Miozän. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, mathematisch-naturwissenschaftliche Reihe, 24:515519.Google Scholar
Süss, H. and Müller-Stoll, W.R. 1977. Untersuchungen über fossile Platanenhölzer. Beiträge zu einer Monographie der Gattung Platanoxylon Andreănszky. Feddes Repertorium, 88:162.Google Scholar
Süss, H. and Müller-Stoll, W.R. 1980. Das fossile Holz Pruninium gummosum Platen emend. Süss u. Müller-Stoll aus dem Yellowstone Nationalpark und sein Parasit Palaeophytobia prunorum sp. nov. nebst Bemerkungen über Markflecke, p. 343364. In Vent, W. (ed.), 100 Jahre Arboretum Berlin (1879-1979). Akademie Verlag, Berlin.Google Scholar
Süss, H. and Müller-Stoll, W.R. 1982. Ein Rosaceen-Holz, Pruninium kraeuseli (E. Schönfeld) comb. nov. aus dem miozänen Ton von Lauterbach. Zeitschrift für Geologische Wissenschaften, 10:15531563.Google Scholar
Süss, H. and Velitzelos, E. 2001. Lebensspuren holzzerstörender Organismen an fossilen Hölzern aus dem Tertiär der Insel Lesbos, Griechenland. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe, 4:5769.Google Scholar
Von Heyden, C. 1862. Gliederthiere aus der Braunkohle des Niederrheins, der Wetterau und der Röhn. Palaeontographica, 10:6282.Google Scholar
Von Tschirnhaus, M. and Hoffeins, C. 2009. Fossil flies in Baltic amber – insights in the diversity of Tertiary Acalyptratae (Diptera, Schizophora), with new morphological characters and a key based on 1,000 collected inclusions. Denisia, 26:171212.Google Scholar
Wappler, T., Currano, E. D., Wilf, P., Rust, J., and Labandeira, C. C. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proceedings of the Royal Society, Series B, 276:42714277.Google Scholar
Wiegmann, B. M., Yeates, D. K., Thorne, J. L., and Kishino, H.Time flies, a new molecular time-scale for brachyceran fly evolution without a clock. Systematic Biology, 52:745756.CrossRefGoogle Scholar
Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Courier Forschungsinstitut Senckenberg, 115:1213.Google Scholar
Wilf, P. and Labandeira, C. C. 1999. Response of plant-insect associations to Paleocene-Eocene warming. Science, 284:21532156.Google Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., and Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313:11121115.Google Scholar
Wilf, P., Labandeira, C. C., Kress, W. J., Staines, C. L., Windsor, D. M., Allen, A. L., and Johnson, K. R. 2000. Timing the radiations of leaf beetles: hispines on gingers from the latest Cretaceous to Recent. Science, 289:291294.Google Scholar
Williams, B. L. 1988. Megafloral relationships within a Paleocene river system, southeastern Montana. , , .Google Scholar
Windsor, D., Ness, J., Gomez, L. D., and Jolivet, P. H. 1999. Species of Aulacoscelis Duponchel and Chevrolat (Chrysomelidae) and Nomotus Gorham (Languriidae) feed on fronds of Central American cycads. Coleoperists Bulletin, 53:217231.Google Scholar
Wing, S. L., Hickey, L. J., and Swisher, C. C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature, 363:342344.Google Scholar
Winkler, I. S. and Mitter, C. 2008. The phylogenetic dimension of insect-plant interactions: a review of recent evidence, p. 240263. In Tilmon, K. J. (ed.), Specialization, Speciation, and Radiation: the Evolutionary Biology of Herbivorous Insects. University of California Press, Berkeley.Google Scholar
Winkler, I. S., Scheffer, S. J., and Mitter, C. 2009a. Molecular phylogeny and systematics of leaf-mining flies (Diptera: Agromyzidae): delimitation of Phytomyza Fallén sensu lato and included species groups, with new insights on morphological and host-use evolution. Systematic Entomology, 34:260292.Google Scholar
Winkler, I. S., Mitter, C., and Scheffer, S. J. 2009b. Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proceedings of the National Academy of Sciences, U.S.A., 106:1810318108.Google Scholar
Winkler, I. S., Rung, A., and Scheffer, S. J. 2010. Hennig's orphans revisited: testing morphological hypotheses in the “Opomyzoidea.” Molecular Phylogenetics and Evolution, 54:746762.Google Scholar
Wolfe, J. A. and Wehr, W. C. 1987. Middle Eocene dicotyledonous plants from Republic, northeastern Washington. U.S. Geological Survey Bulletin, 1597:125.Google Scholar
Ylioja, T., Saranpää, P., Roininen, H., and Rousi, M. 1998. Larval tunnels of Phytobia betulae (Diptera: Agromyzidae) in birch wood. Journal of Economic Entomology, 91:175181.Google Scholar
Zherikhin, V. V. 2002. Insect trace fossils, p. 303324. In Rasnitsyn, A. P. and Quicke, D. L. J. (eds.), History of Insects. Kluwer Academic, Dordrecht.Google Scholar
Zlobin, V. V. 2007. The cyclorrhaphous Diptera limestone of the Isle of Wight. International Journal of Dipterological Research, 18:129136.Google Scholar
Zoebisch, T. G. and Schuster, D. J. 1987. Longevity and fecundity of Liriomyzia trifolii (Diptera: Agromyzidae) exposed to tomato foliage and honeydew in the laboratory. Environmental Entomology, 16:10011003.Google Scholar