Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T21:59:53.025Z Has data issue: false hasContentIssue false

Epizoic stramentid cirripedes on ammonites from Late Cretaceous platy limestones in Mexico

Published online by Cambridge University Press:  14 July 2015

Christina Ifrim
Affiliation:
1Institut für Geowissenschaften, Ruprecht-Karls-Universität, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany,
Francisco J. Vega
Affiliation:
2Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 México, D.F., Mexico
Wolfgang Stinnesbeck
Affiliation:
1Institut für Geowissenschaften, Ruprecht-Karls-Universität, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany,

Abstract

The discovery of platy limestone deposits in northeastern Mexico has led to the collection of well-preserved stramentids of early Turonian age from Vallecillo, state of Nuevo León, and of early Coniacian age from El Carranza, state of Coahuila. Stramentum (Stramentum) pulchellum (Sowerby, 1843) colonized the ammonite shells during the lifetime of the animals, occasionally in two subsequent generations. Colonization of the ammonite shell by Stramentum (S.) pulchellum was hindered by strong ornamentation only. The ammonites did not interfere with their epizoans. Colonization during lifetime shows that these ammonites dwelled in well-oxygenated water levels near the surface, and most stramentids were embedded alive. The known paleobiogeographic occurrence of Stramentum (S.) pulchellum and its long stratigraphic occurrence are considerably enlarged by our findings. The pseudoplanktonic mode of life of Stramentum, and attachment to ammonite shells, may have been a response of a once benthic organism to repeated oxygen-deficient conditions on the seafloor of mid-Cretaceous oceans, i.e., to oceanic anoxic events (OAEs).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. 1988. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology, 14:139154.Google Scholar
Batt, R. J. 1989. Ammonite shell morphotype distributions in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios, 4:3242.Google Scholar
Breton, G. and Boiné, G. 1993. Cinq Stramentum pulchellum (G.B. Sowerby, 1843), cirripèdes pedonculés fixés sur une ammonite du Cénomanien moyen de Haute Normandie (France). Bulletin trimestriel de la Société Géologique de Normandie et des Amis du Muséum de Havre, 80:1925.Google Scholar
Buckeridge, J. S. and Newman, W. A. 2006. A revision of the Iblidae and the stalked barnacles (Crustacea: Cirripedia: Thoracica), including new ordinal familial and generic taxa, and two species from New Zealand and Tasmanian waters. Zootaxa, 1136:138.Google Scholar
Collins, J. S. H. 1986. A new Stramentum (Cirripedia) from the lower Turonian of Nigeria. Bulletin of the British Museum of Natural History (Geology), 40:125131.Google Scholar
Corbett, K., Friedman, M., and Spang, J. 1987. Fracture development and mechanical properties of Austin Chalk, Texas. American Association of Petroleum Geologists Bulletin, 71:1728.Google Scholar
Cuvier, G. 1797. Tableau élémentaire de l'histoire naturelle des Animaux. Baudouin, Paris, xvi+710 p.Google Scholar
Darwin, C. 1854. A monograph on the subclass Cirripedia. The Balanidae, the Verrucidae, etc. Ray Society, London, 684 p.Google Scholar
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture, p. 108121. In Ham, W. E. (ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir, Vol. 1.Google Scholar
Fischer, A. G. and Bottjer, D. J. 1995. Oxygen-depleted waters: A lost biotope and its role in ammonite and bivalve evolution. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195:133146.CrossRefGoogle Scholar
Goldhammer, R. K. and Johnson, C. A. 2001. Middle Jurassic-Upper Cretaceous paleogeographic evolution and sequence-stratigraphic framework of the northwest Gulf of Mexico rim. American Association of Petroleum Geologists Memoir, 75:4581.Google Scholar
Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., and Lourens, L. J. 2004. A new geologic time scale, with special reference to Precambrian and Neogene. Episodes, 27:83100.CrossRefGoogle Scholar
de Grossouvre, A. 1894. Recherches sur la Craie Supérieure, 2, Paléontologie. Les ammonites de la Craie Supérieure. Imprimerie Nationale, Paris, Mémoirs pour Servir à l'Explication de la Carte géologique détaillée de la France, ii+264 p.Google Scholar
Hattin, D. E. 1977. Articulated lepadomorph cirripeds from the Upper Cretaceous of Kansas: Family Stramentidae. Journal of Paleontology, 51:797825.Google Scholar
Hattin, D. E. and Hirt, D. S. 1991. Paleoecology of scalpellomorph cirripeds in the Fairport Member, Carlile Shale (middle Turonian), of Central Kansas. Palaios, 6:553563.Google Scholar
Hauschke, N. 1994. Lepadomorphe Cirripedier (Crustacea, Thoracica) aus dem höchsten Cenoman des nördlichen Westfalen (Nordwestdeutschland), mit Bemerkung zur Verbreitung, Palökologie und Taphonomie der Stramentiden. Geologie und Paläontologie in Westfalen, 32:539.Google Scholar
Hauschke, N. and Schöllmann, L. 2010. Oriented attachment of Cretaceous stalked cirripeds (Crustacea) on living orthocone and plane spiral coiled ammonoids—evidence for the swimming position of cephalopods. FossilX3: The 5th International Conference on Fossil Insects, Arthropods, and Amber. Program and Abstract Volume, Beijing, China.Google Scholar
Hemleben, C. and Swinburne, N. H. M. 1991. Cyclical deposition of the plattenkalk facies, p. 572591. In Einsele, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin.Google Scholar
Hofker, J. 1956. Die Globotruncanen von Nordwest-Deutschland und Holland. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 103:312340.Google Scholar
Hyatt, A. 1889. Genesis of the Arietidae. Smithsonian Contributions to Knowledge, Washington, DC, 673, xi+238 p.Google Scholar
Hyatt, A. 1900. Cephalopoda, p. 502604. In von Zittel, K. A. (ed.), Textbook of Palaeontology. Macmillan, London & New York.Google Scholar
Hyatt, A. 1903. Pseudoceratites of the Cretaceous. Government Printing Office, Washington, Monograph of the United States Geological Survey, 44, 351 p.Google Scholar
Ifrim, C. 2006. The Fossil Lagerstätte at Vallecillo, North-Eastern Mexico: Pelagic Plattenkalks related to Cenomanian-Turonian Boundary Anoxia. Unpublished , University of Karlsruhe, ix+151 p.Google Scholar
Ifrim, C., Buchy, M.-C., Smith, K. T., and Giersch, S. 2008. Palaeoenvironment and preliminary description of early Turonian (late Cretaceous) aquatic squamates from Vallecillo, north-eastern Mexico, p. 4762. In Everhart, M. J. (ed.), Proceedings of the Second Mosasaur Meeting. Fort Hays Studies, Special Issue, Vol. 3. Fort Hays State University, Hays, Kansas.Google Scholar
Ifrim, C., Frey, E., Stinnesbeck, W., Buchy, M.-C., González González, A. H., and López Oliva, J. G. 2005. Fish assemblage in lower Turonian carbonates at Vallecillo, N.L., México. Paleos Antiguo, 1:4351.Google Scholar
Ifrim, C. and Stinnesbeck, W. 2007. Early Turonian ammonites from Vallecillo, north-eastern Mexico: taxonomy, biostratigraphy and palaeobiogeographic significance. Cretaceous Research, 28:642664.CrossRefGoogle Scholar
Ifrim, C. and Stinnesbeck, W. 2008. Cenomanian-Turonian high-resolution biostratigraphy of north-eastern Mexico and its correlation with the GSSP and Europe. Cretaceous Research, 29:943956.CrossRefGoogle Scholar
Ifrim, C., Stinnesbeck, W., and Frey, E. 2007. Upper Cretaceous (Cenomanian-Turonian and Turonian-Coniacian) open marine plattenkalk deposits in NE Mexico. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 245:7181.Google Scholar
Jagt, J. W. M. and Collins, J. S. H. 1989. Upper Cretaceous cirripedes from N.E. Belgium. Proceedings of the Geologists' Association, 100:183192.CrossRefGoogle Scholar
Keller, G. and Pardo, A. 2004. Age and paleoenvironment of the Cenomanian-Turonian global stratotype section and point at Pueblo, Colorado. Marine Micropaleontology, 51:95128.CrossRefGoogle Scholar
Kennedy, W. J. 1984. Systematic palaeontology and stratigraphic distribution of the ammonite faunas of the French Coniacian. Special Papers in Palaeontology, 31:160 p.Google Scholar
Kennedy, W. J. and Cobban, W. A. 1991. Coniacian ammonite faunas from the United States Western Interior. Special Papers in Palaeontology, 45:96 p.Google Scholar
Keupp, H., Röper, M., and Seilacher, A. 1999. Paläobiologische Aspekte von syn vivo-besiedelten Ammonoideen im Plattenkalk des Ober-Kimmeridgiums von Brunn in Ostbayern. Berliner Geowissenschaftliche Abhandlungen, E30:121145.Google Scholar
Klinger, H. C. and Kennedy, W. J. 1984. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Peroniceratidae Hyatt, 1900. Annals of the South African Museum, 92:113294.Google Scholar
Leary, P. N., Carson, G. A., Cooper, M. K. E., Hart, M. B., Horne, D., Jarvis, I., Rosenfeld, A., and Tocher, B. A. 1989. The biotic response to the late Cenomanian oceanic anoxic event; integrated evidence from Dover, SE England. Journal of the Geological Society, London, 146:311317.Google Scholar
Leckie, R. M., Yuretich, R., West, L. O. L., Finkelstein, D., and Schmidt, M. G. 1998. Paleoceanography of the southwestern Interior Sea during the time of the Cenomanian-Turonian boundary (late Cretaceous), p. 101126. In Dean, W. E. and Arthur, M. A. (eds.), Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA. Concepts in Sedimentology and Paleontology, Vol. 6. Society of Economic Paleontologists and Mineralogists.Google Scholar
Logan, W. N. 1897. Some new cirriped crustaceans from the Niobrara Cretaceous of Kansas. Kansas University Quarterly, 6:187189.Google Scholar
Martill, D. M. 1987. A taphonomic and diagenetic case study of a partially articulated ichthyosaur. Palaeontology, 30:543555.Google Scholar
Meek, F. B. 1877. Paleontology. Report of the geological exploration of the 40th parallel. Professional Paper of the Engineer Department of the United States Army, 184:142148.Google Scholar
Monnet, C. 2009. The Cenomanian-Turonian boundary mass exctinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeography, Palaeoclimatology, Palaeoecology, 282:88104.CrossRefGoogle Scholar
Newman, W. A. 1987. Evolution of cirripedes and their major groups, p. 342. In Southward, A. J. (ed.), Crustacean issues 5. Barnacle biology. Balkema, Rotterdam.Google Scholar
Nomura, S.-I., Maeda, H., Harada, S., and Tanaka, G. 2009. First record of the cirripede genus Stramentum (Thoracica, Scalpelliformes) from the Upper Cretaceous of Japan. Palaeontology, 52:849855.CrossRefGoogle Scholar
Page, K. N. 1996. Mesozoic ammonoids in space and time, p. 755794. In Landman, N., Tanabe, K., and Davis, R. A. (eds.), Ammonoid Paleobiology. Topics in Geobiology, Vol. 13. Plenum, New York.CrossRefGoogle Scholar
Porthault, B. 1970. In P. Donze, B. Porthault, and O. De Villortreys. (eds.). Le Sénonien inférieur de Puget-Theniers (Alpes-Maritimes) et sa microfaune. Geobios, 3:41106.Google Scholar
Powell, J. D. 1963. Cenomanian-Turonian (Cretaceous) ammonites from Trans-Pecos Texas and northeastern Chihuahua, Mexico. Journal of Paleontology, 37:309323.Google Scholar
Reeside, J. B. 1932. The Upper Cretaceous ammonite genus Barroisiceras in the United States. United States Geological Survey Professional Paper, 170:920.Google Scholar
Royo y Gómez, J. 1941. Crustáceos y Seudoterópodos del Cretácico de Colombia. Boletín de Minas y Petróleos, Bogotá, 1941:121144, 209-214.Google Scholar
Salvador, A. 1991. Origin and development of the Gulf of Mexico Basin, p. 389444. In Salvador, A. (ed.), The Gulf of Mexico Basin. The Geology of North America, Vol. J, Geological Society of America, Boulder, Colorado.Google Scholar
Schlüter, C. 1867. Beitrag zur Kenntnis der jüngsten Ammoneen Norddeutschlands. A. Henry, Bonn, 36 p.CrossRefGoogle Scholar
Seilacher, A. 1982. Ammonite shells as habitats in the Posidonia Shales of Holzmaden—floats or benthic islands? Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1982:98114.Google Scholar
Seilacher, A. 1990. Taphonomy of fossil Lagerstätten, p. 266270. In Briggs, D. E. G. and Crowther, P. R. (eds.), Palaeobiology—A Synthesis. Blackwell Scientific Publications, Oxford.Google Scholar
Sowerby, J. D. C. 1841-1846. The Mineral Conchology of Great Britain. B. Meredith, London, 7 p.Google Scholar
Stinnesbeck, W., Ifrim, C., Schmidt, H., Rindfleisch, A., Buchy, M.-C., Frey, E., González González, A. H., Vega-Vera, F. J., Porras-Muzquiz, H., Cavin, L., Keller, G., and Smith, K. T. 2005. A new lithographic limestone deposit in the Upper Cretaceous Austin Group at El Rosario, county of Muzquiz, Coahuila, northeastern Mexico. Revista Mexicana de Ciencias Geológicas, 22:401418.Google Scholar
Taylor, P. D. and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62:1103.Google Scholar
Vega, F. J., Nyborg, T., Rojas-Briceño, A., Patarroyo, P., Luque, J., Porras-Muzquiz, H., and Stinnesbeck, W. 2007. Upper Cretaceous Crustacea from Mexico and Columbia: similar faunas and environments during Turonian times. Revista Mexicana de Ciencias Geológicas, 24:403422.Google Scholar
Villamil, T. and Arango, C. 1998. Integrated stratigraphy of latest Cenomanian and early Turonian facies of Colombia, p. 129159. In Pindell, J. L. and Drake, C. L. (eds.), Paleogeographic Evolution and Non-Glacial Eustasy, Northern South America. Society of Economic Paleontologists and Mineralogists Special Publication, Vol. 58.CrossRefGoogle Scholar
Walaszczyk, I. and Wood, C. J. 1998. Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder Quarry, Lower Saxony, Germany, and the Slupia Nadbrzezna section, Central Poland. Acta Geologica Polonica, 48:395434.Google Scholar
Wani, R., Kase, T., Shigeta, Y., and De Ocampo, R. 2005. New look at ammonoid taphonomy, based on field experiments with modern chambered nautilus. Geology, 33:849852.Google Scholar
Westermann, G. E. G. 1996. Ammonoid life and habitat, p. 607707. In Landman, N., Tanabe, K., and Davis, R. A. (eds.), Ammonoid Paleobiology. Topics in Geobiology, Vol. 13. Plenum, New York.Google Scholar
Whiteaves, J. F. 1889. On some Cretaceous fossils from British Columbia, the North West Territory and Manitoba. Contributions to Canadian Palaeontology, 1:151196.Google Scholar
Williston, S. W. 1896. The Kansas Niobrara Cretaceous. The University Geological Service of Kansas, 2:235246.Google Scholar
Withers, T. H. 1920. The cirripede genus Stramentum (Loricula): its history and structure. Annual Magazine of Natural History, 5:6585.Google Scholar
Wittler, F. 1996. Erster Nachweis des lepadomorphen Cirripediers Stramentum (Stramentum) pulchellum (Sowerby 1843) aus dem mittleren Turon des Dortmunder Stadtgebietes nebst Bemerkungen zur Palökologie und Überlieferungsproblematik der Stramentiden. Arbeitskreis Paläontologie Hannover, 24:85118.Google Scholar
Wright, C. W., Calloman, J. H., and Howarth, M. K. 1996. Cretaceous Ammonoidea (revised), p. xx+362. In Kaesler, R. (ed.), Treatise of Invertebrate Paleontology, Part L, Mollusca 4. University of Kansas & Geological Society of America, Boulder, Lawrence.Google Scholar
Wright, C. W. and Wright, E. V. 1951. A survey of the fossil Cephalopoda of the Chalk of Great Britain. Monograph of the Palaeontographical Society, London, 140.Google Scholar
Young, K. 1963. Upper Cretaceous ammonites from the Gulf Coast of the United States. University of Texas Bulletin, 6304:1373.Google Scholar
Zittel, K. A. von. 1884. Cephalopoda, p. 329522. Handbuch der Paläontologie 1, Abteilung 2, Lieferung 3. R. Oldenburg, München, Leipzig.Google Scholar