Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T22:14:50.092Z Has data issue: false hasContentIssue false

First occurrence of an in situ Anthaspidellid sponge in a dendrolite mound (Upper Cambrian; Great Basin, USA)

Published online by Cambridge University Press:  20 May 2016

Russell S. Shapiro
Affiliation:
1Department of Geology, Gustavus Adolphus College, St. Peter, Minnesota 56082,
J. Keith Rigby
Affiliation:
2Department of Geology, Brigham Young University, Provo, Utah 84602–4606,

Abstract

Small silicified anthaspidellid sponges identified as Gallatinospongia conica Okulitch and Bell, 1955 are described for the first time from the Upper Cambrian of the Great Basin where the sponges are found in situ within dendrolitic microbial reefs. This association forms the oldest anthaspidellid-microbial reefs of Laurentia.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H., and Palmer, A. R. 1961. Revision of stratigraphic nomenclature of Cambrian rocks, Nevada Test Site and vicinity, Nevada. United States Geological Survey Professional Paper, 424C, Article 187:C-100–C-102.Google Scholar
Berkey, C. P. 1898. Geology of the St. Croix Dalles. American Geologist, 21:270294.Google Scholar
Brunton, F. R., and Dixon, O. A. 1994. Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors. Palaios, 9:370387.Google Scholar
Cañas, F., and Carrera, M. 1993. Early Ordovician microbial-spongereceptaculitid bioherms of the Precordillera, western Argentina. Facies, 29:169178.Google Scholar
Church, S. B. 1974. Lower Ordovician patch reefs in western Utah. Brigham Young University Geology Studies, 21(3)4162.Google Scholar
Cooper, J. D. 1989. Does the Upper Cambrian Dunderberg Shale-Halfpint carbonate couplet in the southern Great Basin qualify as a Grand Cycle?, p. 7785. In Cooper, J. D. (ed.), Cavalcade of Carbonates. Pacific Section Society of Economic Paleontologists and Mineralogists, 61.Google Scholar
Cooper, J. D., and Edwards, J. C. 1991. Cambro-Ordovician craton-margin carbonate section, southern Great Basin: a sequence-stratigraphic perspective, p. 237252. In Cooper, J. D. and Stevens, C. H. (eds.), Paleozoic Paleogeography of the Western United States II. Pacific Section Society of Economic Paleontologists and Mineralogists, 67.Google Scholar
Cooper, J. D., and Keller, M. 1995. Ordovician craton margin—miogeoclinal transition, southern Great Basin, p. 107132. In Cooper, J. D. (ed.), Ordovician of the Great Basin: Field Trip Guidebook and Volume for the Seventh International Symposium on the Ordovician System. Pacific Section Society of Economic Paleontologists and Mineralogists, 78.Google Scholar
Debrenne, F., and Reitner, J. 2001. Sponges, cnidarians, and ctenophores, p. 301325. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
de Freitas, T., and Mayr, U. 1995. Kilometre-scale microbial buildups in a rimmed carbonate platform succession, Arctic Canada; new insight on Lower Ordovician reef facies. Bulletin of Canadian Petroleum Geology, 43:407432.Google Scholar
Griffin, K. M. 1989. Microbial reefs on a carbonate ramp: a case study from western North America with a global perspective, p. 101112. In Cooper, J. D. (ed.), Cavalcade of Carbonates. Pacific Section Society of Economic Paleontologists and Mineralogists, 61.Google Scholar
Hamdi, B., Rozanov, A. Yu., and Zhuravlev, A. Yu. 1995. Latest Middle Cambrian metazoan reef from northern Iran. Geological Magazine, 132:367373.Google Scholar
James, N. P., and Gravestock, D. I. 1990. Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology, 37:455480.Google Scholar
Johns, R. A. 1994. Ordovician lithistid sponges of the Great Basin. Nevada Bureau of Mines and Geology Open File Report 94–1, 156 p.Google Scholar
Kepper, J. 1972. Paleoenvironmental patterns in Middle to lower Upper Cambrian interval in eastern Great Basin. American Association of Petroleum Geologists Bulletin, 56:503527.Google Scholar
Kepper, J. 1981. Ramp and platform deposition during the Middle Cambrian, eastern California and western Nevada, p. 102105. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey Open-File Report, 81–743.Google Scholar
Kruse, P. D. 1983. Middle Cambrian “Archaeocyathus” from the Georgina Basin is an anthaspidellid sponge. Alcheringa, 7:4958.Google Scholar
Kruse, P. D. 1996. Update on the northern Australian Cambrian sponges Rankenella, Jawonya and Wagima. Alcheringa, 20:161178.Google Scholar
Miller, R. H., Sundberg, F. A., Harma, R. H., and Wright, J. 1981. Late Cambrian stratigraphy and conodonts of southern Nevada. Alcheringa, 5:183196.Google Scholar
Miller, S. A. 1889. Class Porifera, p. 152167. In North American Geology and Paleontology. Author, Cincinnati.Google Scholar
Montañez, I. P., Banner, J. L., Osleger, D. A., Borg, L. E., and Bosserman, P. J. 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, 24:917920.Google Scholar
Okulitch, V. J., and Bell, W. G. 1955. Gallatinospongia, a new siliceous sponge from the Upper Cambrian of Wyoming. Journal of Paleontology, 29:460461.Google Scholar
Palmer, A. R. 1965. Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. United States Geological Survey Professional Paper, 493, 105 p.Google Scholar
Pratt, B. R. 1989. Early Ordovician cryptalgal-sponge reefs, Survey Peak Formation, Rocky Mountains, Alberta, p. 213217. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs: Canada and Adjacent Areas. Canadian Society of Petroleum Geologists Memoir, 13.Google Scholar
Pratt, B. R., and James, N. P. 1982. Cryptalgal-metazoan bioherms of early Ordovician age in the St. George Group, western Newfoundland. Sedimentology, 29:543569.Google Scholar
Pratt, B. R., Spincer, B. R., Wood, R. A., and Zhuravlev, A. Yu. 2001. Ecology and evolution of Cambrian reefs, p. 254274. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Rauff, H. 1895. Palaeospongiologie. Palaeontographica, 43:223346.Google Scholar
Reid, R. E. H. 1963. Preliminary notice of a classification of the Demospongea. Irish Naturalists Journal, 14:9094.Google Scholar
Riding, R. 2000. Microbial carbonates; the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47:179214.Google Scholar
Riding, R. 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58:163231.Google Scholar
Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Palaeontographica Canadiana No. 2, 105 p., 20 pls.Google Scholar
Rowland, S., and Shapiro, R. S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician, p. 95128. In Kiessling, W. and Flügel, E. (eds.), Phanerozoic Reef Patterns: SEPM (Society for Sedimentary Geology) Special Publication, 72.Google Scholar
Schmidt, O. 1870. Grundzüge einer Spongien-fauna des atlantischen Gebietes. Wilmelm Englemann, Leipzig, 88 p.Google Scholar
Shapiro, R. S. 1998. Upper Cambrian-lowermost Ordovician stratigraphy and microbialites of the Great Basin, U.S.A. Unpublished Ph.D. dissertation, University of California, Santa Barbara, 446 p.Google Scholar
Shapiro, R. S., and Awramik, S. M. 2000. Microbialite morphostratigraphy as a tool for correlating Late Cambrian-early Ordovician sequences. Journal of Geology, 108:171180.Google Scholar
Sollas, W. J. 1875. Sponges, p. 427446, 26 figs.In Encyclopaedia Britannica (ninth edition). Adams and Charles Black, Edinburgh.Google Scholar
Spincer, B. R. 1996. The palaeoecology of some Upper Cambrian microbial-sponge-eocrinoid reefs, central Texas. Sixth North American Paleontological Convention Abstracts of Papers. The Paleontological Society Special Publication, 8:367.Google Scholar
Toomey, D. F., and Nitecki, M. H. 1979. Organic buildups in the Lower Ordovician (Canadian) of Texas and Oklahoma: Fieldiana: Geology, n. s., 2, 181 p.Google Scholar
Vologdin, A. G. 1932. Arkheotsiaty Sibiri, vyp.2, Fauna kembriyskikh izvestnyakov Altaya. Gosudarst. Nauchnoteckhnich. Geol.-razved. Izdatel., Moscow i Leningrad, 106 p. (Transliterated from Russian)Google Scholar
Wilson, J. L. 1950. An Upper Cambrian pleospongiid (?). Journal of Paleontology, 24:591593.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, Oxford, 414 p.CrossRefGoogle Scholar
Wood, R., Zhuravlev, A. Yu., and Tseren, A. Chimed 1993. The ecology of Lower Cambrian buildups from Zuune Arts, Mongolia: implications for early metazoan reef evolution. Sedimentology, 40:829858.Google Scholar
Wyatt, D. J. 1979. Carbonate mud mounds from the Lower Ordovician Wah Wah Limestone of the Ibex area, western Millard County, western Utah. Brigham Young University Geology Studies, 26:101114.Google Scholar
Zhuravlev, A. Yu. 1996. Reef ecosystem recovery after the Early Cambrian extinction, p. 7996. In Hart, M. B. (ed.), Biotic recovery from mass extinction events. Geological Society (London) Special Publication, 102.Google Scholar
Zhuravlev, A. Yu., and Riding, R., (eds.). 2001. The Ecology of the Cambrian Radiation. Columbia University Press, New York, 525 p.Google Scholar