Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T20:56:13.531Z Has data issue: false hasContentIssue false

Fossil Fungi from Miocene Sedimentary Rocks of the Central and Coastal Amazon Region, North Brazil

Published online by Cambridge University Press:  15 October 2015

José Tasso Felix Guimarães
Affiliation:
Instituto Tecnológico Vale–ITV, Rua Boa Ventura da Silva 955, 3° andar, Nazaré, Belém, Pará, 66055–090, Brazil,
Afonso César Rodrigues Nogueira
Affiliation:
Programa de Pós–Graduação em Geologia e Geoquímica, Universidade Federal do Pará, Rua Augusto Corrêa 1, Guamá, Belém, Pará, 66075–110, Brazil,
José Bandeira Cavalcante Da Silva Jr.
Affiliation:
Faculdade de Geologia, Universidade Federal do Pará, Rua Augusto Corrêa 1, Guamá, Belém, Pará, 69077–000, Brazil, ;
Joelson Lima Soares
Affiliation:
Faculdade de Geologia, Universidade Federal do Pará, Rua Augusto Corrêa 1, Guamá, Belém, Pará, 69077–000, Brazil, ;
Rosemery Silveira
Affiliation:
Universidade Federal do Amazonas, Av. General Rodrigo O. J. Ramos, 3000, Coroado, 69077-000, Manaus-AM, Brazil,

Abstract

Samples from outcrops of the Miocene Solimões and Barreiras formations from the central and coastal Amazon regions of Brazil were analyzed palynologically. Assemblages of fossil fungi were identified, and are described herein, and their relevance to paleoenvironmental and paleoclimatic studies in tropical regions discussed. The fungal assemblage comprises four spore groups, 19 species belonging to 12 genera. Additionally, two new species are proposed. The samples from the Solimões Formation contain the following taxa: Mediaverrunites elsikii, Mediaverrunites mulleri, Monoporisporites sp., Fusiformisporites crabbii, and Multicellites cingulatus. The presence of these suggests river channel margins colonized by freshwater vegetation, where seasonal fluctuations of water table and rainfall produce wetter substrates. The samples from the Barreiras Formation showed higher species and generic diversity than those from the Solimões Formation with Hypoxylonites minutus, Hypoxylonsporites ater, Hypoxylonites sp., the new species Inapertisporites multiporus n. sp., Pluricellaesporites regularis, Lacrimasporonites levis, Monoporisporites annulatus, Spirotremesporites simplex, Dyadosporites novus, Dyadosporites sp., and Multicellaesporites attenuates. All of these correspond to parasitic fungi from a range of from tropical wetlands. Spegazzinites sp. and Dicellaesporites aculeolatus, good indicators of marine influence and mangrove presence, were also identified in the samples from the Barreiras Formation. Furthermore, the fungal spore taxa Inapertisporites multiporus, Mediaverrunites elsikii, Mediaverrunites mulleri, Pluricellaesporites regularis, and Spirotremesporites simplex serve as stratigraphic indicators when combined with miospore index taxa such as Crassoretitriletes vanraadshooveni, Grimsdalea magnaclavata and Fenestrites longispinosus indicating a Miocene age for these sediments in the Amazon region.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borut, S. Y. and Johnson, T. W. 1962. Some biological observations on fungi in estuarine sediments. Mycologia, 54:181193.CrossRefGoogle Scholar
Cannon, P. F. and Kirk, P. M. 2007. Fungal Families of the World. Wallingford, CABI. 456p.CrossRefGoogle Scholar
Carvalho, M. A. 2003. Paleoecological and paleoclimatic studies based on palynology of Pliocene and Pleistocene sediments from the Foz do Amazonas Basin, Brazil. Neues Jahbuch für Stratigrafie und Paläontologie, 229:118.CrossRefGoogle Scholar
Clarke, R. T. 1965. Fungal spores from Vermejo Formation coal beds (Upper Cretaceous) of central Colorado. Mountain Geologist, 2:8593.Google Scholar
Dueñas-Jimezez, H. 1979. Estudio palinológico de los 35 mts. superiores de la Sección Tarragona, Sabana de Bogotá. Caldasia, 12:539571.Google Scholar
Elsik, W. C. 1968. Palynology of Paleocene Rockdale lignite, Milam Country, Texas. I. Mophology and taxonomy. Pollen et Spores, 10:263314.Google Scholar
Elsik, W. C. 1976. Microscopy fungal remains and Cenozoic palynostratigraphy. Geoscience and Man, 15:115120.CrossRefGoogle Scholar
Elsik, W. C. 1990. Hypoxylonites and Spirotremesporites, form genera for Eocene to Pleistocene fungal spores bearing a single furrow. Palaeontographica, Abteilung B, 216:137169.Google Scholar
Elsik, W. C. and Jansonius, J. 1974. New genera of Paleogene fungal spores. Canadian Journal of Botany, 52:953958.CrossRefGoogle Scholar
Elsik, W. C. and Jarzen, D. M. 2009. New Species of the Late Cenozoic Fungal Form–Genus Mediaverrunites Jarzen and Elsik 1986 Ex Nandi and Sinha 2007. Palynology, 33:99104.Google Scholar
Felix, J. 1894. Studien iiber fossile. Pilze. Zeitschrift der Deutschen Geologischen Gesellschaft, 46:269280.Google Scholar
Ferreira, E. P., Carvalho, M. A., and Viviers, M. C. 2005. Palinologia (fungos) da Formação Calumbi, Paleoceno da Bacia de Sergipe, Brasil. Arquivos do Museu Nacional, 63:395410.Google Scholar
Freitas, A. G. 2005. Reconstrução paleoclimática com base na aná–lise de palinomorfos continentais em sedimentos pleistocênicos–holocênicos do talude continental brasileiro de bacia de Campos, RJ. Unpublished Master dissertation. Programa de Pós–graduação em Geologia, Universidade Federal do Rio de Janeiro, 126p.Google Scholar
Freitas, A. G. and Carvalho, M. A. 2011. Esporos e frutificações de fungos Holocênicos detestemunho da Lagoa da Ferradura (Armação dos Búzios, Rio de janeiro, Brasil). Revista brasileira de Paleontologia, 14:179188.CrossRefGoogle Scholar
Garralla, S. 1987. Palinomorfos (Fungi) de la Formación Ituzaingó (Plioceno Superior) de La Provincia de Corrientes, Argentina. Facena, 7:87109.Google Scholar
Germeraad, J. H., Hopping, C. A., and Muller, J. 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6:189348.CrossRefGoogle Scholar
Hoorn, C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology, 105:267309.CrossRefGoogle Scholar
Hoorn, C. 1994. Fluvial palaeonvironments in the intracratonic Amazonas Basin (early Miocene–early middle Miocene, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 109:154.CrossRefGoogle Scholar
Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., and Antonelli, A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330:927931.CrossRefGoogle ScholarPubMed
Jansonius, J. and Kalgutkar, R. M. 2000. Redescription of some fossil fungal spores. Palynology, 24:3747.CrossRefGoogle Scholar
Jaramillo, C., Hoorn, C., Silva, S. A. F., Leite, F., Herrera, F., Quiroz, L., Dino, R., and Antonioli, L. 2010. The origin of the modern Amazon rainforest: Implications of the palynological and palaeobotanical record, p. 317334. InHoorn, C. and Wesselingh, F. P.(eds.), Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley-Blackwell, Oxford.Google Scholar
Jarzen, D. M. and Elsik, W. C. 1986. Fungal palynomorphs recovered from recent river deposits, Luangwa Valley, Zambia. Palynology, 10:3560.CrossRefGoogle Scholar
Jarzen, D. M. and Dilcher, D. L. 2006. Report on a palynological assessment of Holocene mangrove vegetation at the American Memorial Park, Saipan, Northern Marianas. Unpublished report to the United States National Parks Service, 31p.Google Scholar
Kalgutkar, R. M. and Sigler, L. 1995. Some fossil fungal form–taxa from the Maastrichtian and Palaeogene ages. Mycological Research, 99:513522.CrossRefGoogle Scholar
Kalgutkar, R. M. 1997. Fossil fungi from the lower Tertiary Iceberg Bay Formation, Eukeka Sound Group, Axel Heiberg Island, Northwest Territories, Canada. Review of Palaeobotany and Palynology, 97:197226.CrossRefGoogle Scholar
Kalgutkar, R. M. and Jansonius, J. 2000. Synopsis of Fossil Fungal Spores, Mycelia, and Frutifications. Dallas, American Association of Stratigraphy Palynologists Foundation, Contributions Series 39, 423p.Google Scholar
Kar, R., Mandaokar, B. D. and Kar, R. K., 2010. Fungal taxa from the Miocene sediments of Mizoram, northeast India. Review of Palaeobotany and Palynology, 158:240249.CrossRefGoogle Scholar
Kirk, M. P., Cannon, P. F., Minter, D. W., and Stalpers, J. A. 2008. Dictionary of the Fungi, (tenth edition). Wallingford, CABI, 718p.Google Scholar
Kumar, P. 1990. Fungal remains from the Miocene Quilon beds of Kerala State, South India. Review of Palaeobotany and Palynology, 62:1328.CrossRefGoogle Scholar
Lange, R. T. 1978. Southern Australian Tertiary epiphyllous fungi, modern equivalentsin the Australasian region and their palaeohabitat indicator value. Canadian Journal of Botany, 46:532541CrossRefGoogle Scholar
Lange, R. T. and Smith, P. H. 1971. The Maslin Bay flora, South Australia. 3. Dispersed fungal spores. Neues Jahrbuch fur Geologie und Paliiontologie Monatshefte, 11, 663681.Google Scholar
Latrubesse, E. M., Cozzuol, M., Da Silva-CAminha, S. A. F., Rigsby, C.A., Absy, M. L., and Jaramillo, C. 2010. The late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth Science Reviews, 99:99124.CrossRefGoogle Scholar
Leite, F. P. R., Bernardes-De-Oliveira, M. E., Arai, M., and Truckenbrodt, W. 1997. Palinoestratigrafia da Formacão Pirabas e Grupo Barreiras, Mioceno do Nordeste do Estado do Pará, Brasil. Revista Universidade de Guarulhos, Geociências, 2:141147.Google Scholar
Lorente, M. A. 1986. Palynology and Palynofacies of the Upper Tertiary in Venezuela. Dissertatione Botanicae, Band 99, J. Cremer, Berlin-Stuttgart, 222p.Google Scholar
Martínez–Hernández, E. and Tomasini-Ortiz, A. C. 1989. Esporas, hifas y otros restos de hongos fósiles de la cuenca carbonífera de Fuentes–Río Escondido (Campaniano–Maastrichtiano), Estado de Coahuila. Rev. Inst. Geol. UNAM, 8:235242.Google Scholar
Monteiro, F. A., Vieira, B. S., Barreto, R. W. 2003. Curvularia lunata and Phyllachora sp.: Two fungal of the grassy weed Hymenache amplexicaulis from Brazil. Autralasian Plant Pathology, 32:449453.CrossRefGoogle Scholar
Muller, J., Giacomo, E., and Van Erve, A. W. 1987. A palynological zonation for the Cretaceous, Tertiary and Quaternary of Northern South America. American Association of Stratigraphy Palynologists Foundation, Contribution Series, 19:776.Google Scholar
Nandi, B. and Sinha, A. 2007. Validation of the Miocene fungal spore Mediaverrunites from Mizoram, India. Palynology, 31:95100.CrossRefGoogle Scholar
Parsons, G. M. and Norris, G., 1999. Paleogene fungi from the Caribou Hills, Mackenzie Delta, northern Canada. Palaeontographica Abt. B, 250:77167.Google Scholar
Pirozynski, K. A. 1976. Fungal spores in fossil record. Biological Memoirs, 1:104120.Google Scholar
Ramanujam, C. G. K. and Rao, K. P. 1978. Fungal spores from the Neogene strata of Kerala in South India. Proceedings of the IVth International Palynological Conference, Lucknow, 1976–77, 1:291304.Google Scholar
Ramanujam, C. G. K. and Srisailam, K. 1980. Fossil fungal spores from the Neogene beds around Cannanore in Kerala State. The Botanique, 9:119133.Google Scholar
Ramírez, R. A. 2004. Middle to late Eocene dinoflagellate cysts and fungal spores from the east coast of the Maracaibo Lake, Venezuela (Biostratigraphy, Palaeoecology and Taxonomy). Unpublished Ph.D. dissertation, Geowissenschaften Fakultät der Eberhard–Karls–Universität Tübingen. 145p.Google Scholar
Rouse, G. E. 1962. Plant microfossils from the Burrad Formation of western British Columbia. Micropalaeontology, 8:187218.CrossRefGoogle Scholar
Rouse, G. E. and Mustard, P. S. 1997. Nomenclatural note and corrections. Palynology, 21:207208CrossRefGoogle Scholar
Salard-Cheboldaeff, M. and Locquin, M. V. 1980. Champignons présents au Tertiaire le long du littoral de l'Afrique équatoriale. 105e Congrès National dês Sociétés savantes, Caen, 1980, Sciences, fascicule 1:183195.Google Scholar
Salujha, S. K., Kindra, G. S., and Rehman, K. 1974. Palynology of the South Shillong Front, Part II. The Palaeogenes of Khasi and Jaintia hills. Palaeobotanist, 21 (3):267284.Google Scholar
Santos, D. B. 2008. A paleopalinologia na reconstituição da paisagem Paleógena na Formação Itaquaquecetuba (Mineradora Itaquareia 1), Bacia de São Paulo, Brasil. Unpublished Master dissertation. Pós-graduação em Análise Geoambiental, Universidade de Guarulhos, 302p.Google Scholar
Sepúlveda, E. G. 1980. Estudio palinológico de sedimentitas intercaladas en la “Serie Andesítica Andina,” cordón oriental del Futalaufquén, Chubut, Revista Asociación Geológica Argentina, 35:248272.Google Scholar
Sharma, N., Kar, R. K., Agarwal, A., and Kar, R. 2005. Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment. Micropaleontology, 51:7382.CrossRefGoogle Scholar
Sheffy, M. V. and Dilcher, D. L. 1971. Morphology and Taxonomy of fungal spores. Paleontographica, Abt. B., 133:3451.Google Scholar
Silva-Caminha, S. A. F., Jaramillo, C. A., and Absy, M. L. 2010. Neogene palynology of the Solimões Basin, Brazilian Amazonia. Palaeontographica Abteilung B: Palaeobotany–Palaeophytology, 283:167.Google Scholar
Silveira, R. R. 2005. Cronoestratigrafia e interpretação paleoambiental de depósitos Miocenos da Formação Solimões, região de Coari, AM. Unpublished Master dissertation. Programa de Pós–Graduação em Geociências–Universidade Federal do Amazonas, 91p.Google Scholar
Soomro, S., Leghari, S. M., Lashari, R., Rajar, A. W., and Abbasi, Q. D. 2010. Fossil fungal spores from brown coal of Sonda, District Thatta, Sindh, Pakistan. Sindh University Research Journal, Science Series, 42 (2):7384.Google Scholar
Taylor, T. N. and Taylor, E. L. 1996. The distribution and interactions of some Paleozoic fungi. Review of Palaeobotany and Palynology, 95:8394.CrossRefGoogle Scholar
Tripathi, A. 2001. Fungal remains from Early Cretaceous Intertrappean beds of Rajmahal Formation in Rajmahal Basin, India. Cretaceous Research, 22:565574.CrossRefGoogle Scholar
Uesugui, N. 1979. Palinologia: técnicas de tratamento de amostras. Boletim Técnico Petrobrás, 22:229240.Google Scholar
Vajda, V. and McLoughlin, S. 2004. Fungal proliferation at the Cretaceous–Tertiary boundary. Science, 303:1489.CrossRefGoogle ScholarPubMed
Van der Hammen, T. 1954. The development of Colombian flora throughout geologic periods: I, Maestrichtian to Lower Tertiary. Boletín Geológico, 2:49106.CrossRefGoogle Scholar
Van der Hammen, T. 1956. Description of some genera and species of fossil pollen and spores. Boletín Geológico, 4:103109.CrossRefGoogle Scholar
Van der Hammen, T. and Wijmstra, T. A. 1964. A palynological study on the Tertiary and the Upper Cretaceous of British Guyana. Leidse Geol. Meded., 30:183241.Google Scholar
Vega, A. M. L. 2006. Reconstituição paleoambiental dos depósitos miocênos da região do Rio Purus, Bacia do Solimões (AM). Unpublished Master dissertation, Programa de Pós-Graduação em Geologia, Universidade Federal do Amazonas.Google Scholar
Vega, A. M. L., Nogueira, A. C. R., and Mapes, R. W. 2006. Delta–Lacustre da e Mioceno da Parte Leste da Bacia do Solimões: Implicações na História do Rio Amazonas. InABEQUA 2007, Belém. http://www.abequa.org.br/trabalhos/2007_angela_maria_simposioba.pdfGoogle Scholar
Viégas, A. P. 1944. Alguns fungos do Brasil III. Ustilaginales. Bragantia, 4:739762.CrossRefGoogle Scholar
Weinstein, R. N., Pfister, D. H., and Iturriaga, T. 2002. A phylogenetic study of the genus Cookeina. Mycologia, 94:673682.CrossRefGoogle ScholarPubMed
Whalley, A. J. S. 1996. The xylariaceous way of life. Mycological Research 100:897922.CrossRefGoogle Scholar
White, J. M. 2012. The palynostratigraphy, age, and environment of strata penetrated by the Mallik 5L–38 gas hydrate research well determined by differentiating the recycled and contemporaneous palynomorphs. Geological Survey of Canada, Open File 6882, 90p.CrossRefGoogle Scholar