Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T21:15:12.287Z Has data issue: false hasContentIssue false

Latest Cambrian cornutes (Echinodermata: Stylophora) from the Taebaeksan Basin, Korea

Published online by Cambridge University Press:  20 May 2016

Seung-Bae Lee
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea, ,
Bertrand Lefebvre
Affiliation:
UMR Biogéosciences, Université de Bourgogne, 6 boulevard Gabriel F-21000 Dijon, France,
Duck K. Choi
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, Korea, ,

Abstract

The oldest echinoderms and first cornute stylophorans ever reported from Korea are described, based on more than 40 specimens collected from the Late Cambrian of the Taebaeksan Basin. New material doubles the number of stylophorans described from Asia and the number of specimens of Late Cambrian stylophorans recorded throughout the world. Three different cornutes are identified: Sokkaejaecystis serrata n. gen. and sp. and two genus and species indeterminate forms A and B. Sokkaejaecystis serrata and indeterminate form B are assigned to the Chauvelicystinae, while the systematic position of indeterminate form A within cornutes is difficult to assess. This new material suggests paleobiogeographic connections between echinoderm faunas from Korea, western North America (Wyoming), and western Europe (Montagne Noire, Shropshire). A cladistic analysis of selected cothurnocystids shows that Sokkaejaecystis n. gen. is closely related to Prochauvelicystis and the sister group of a clade uniting Ampelocarpus with Lyricocarpus. The analysis also confirms the placement of Milonicystis within the Chauvelicystinae and questions the monophyly of the genus Chauvelicystis.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvaro, J. J., Gonzalez-Gomez, C., and Vizcaïno, D. 2003. Paleogeographic patterns of the Cambrian–Ordovician transition in the southern Montagne Noire (France): preliminary results. Bulletin de la Société géologique de France, 174:217225.Google Scholar
Bather, F. H. 1913. Caradocian Cystidea from Girvan. Transactions of the Royal Society of Edinburgh, 49:359529.Google Scholar
Bell, G. L., and Sprinkle, J. 1980. New homoiostelean echinoderms from the Late Cambrian of Alabama. Geological Society of America Abstracts with Programs, 12(7):385.Google Scholar
Chauvel, J. 1966. Echinodermes de l'Ordovicien du Maroc. Cahiers de Paléontologie, Editions du CNRS, Paris, 120 p.Google Scholar
Chauvel, J. 1981. Etude critique de quelques échinodermes stylophores du Massif armoricain. Bulletin de la Société Géologique et Minéralogique de Bretagne, (C) 13:67101.Google Scholar
Chauvel, J. 1986. Milonicystis kerfornei n. gen. n. sp. un nouvel échinoderme homalozoaire de l'Ordovicien armoricain. Hercynica, 2:7981.Google Scholar
Chen, J.-Y., Qian, Y.-Y., Zhang, J.-M., Lin, Y.-K., Yin, L.-M., Wang, Z.-H., Wang, Z.-Z., Yang, J.-D., and Wang, Y.-X. 1988. The recommended Cambrian-Ordovician global boundary stratotype of the Xiaoyangqiao section (Dayangcha, Jilin Province), China. Geological Magazine, 125:415444.Google Scholar
Choi, D. K. 1998. The Yongwol Group (Cambrian–Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal, 2:220234.Google Scholar
Choi, D. K., and Kim, K. H. 1989. Problematic fossils from the Dumugol Formation (Lower Ordovician), Dongjeom Area, Korea. Journal of the Geological Society of Korea, 25:405412.Google Scholar
Choi, D. K., Kim, D. H., and Sohn, J. W. 2001. Ordovician trilobite faunas and depositional history of the Taebaeksan Basin, Korea: implications for palaeogeography. Alcheringa, 25:5368.Google Scholar
Chough, S. K., Kwon, S. T., Ree, J. H., and Choi, D. K. 2000. Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews, 52:175235.Google Scholar
Cripps, A. P. 1988. A new species of stem-group chordate from the Upper Ordovician of Northern Ireland. Palaeontology, 31:10531077.Google Scholar
Cripps, A. P. 1991. A cladistic analysis of the cornutes (stem chordates). Zoological Journal of the Linnean Society, 102:333366.Google Scholar
Cripps, A. P., and Daley, P. E. J. 1994. Two cornutes from the Middle Ordovician (Llandeilo) of Normandy, France, and a reinterpretation of Milonicystis kerfornei. Palaeontographica, Abt. A, 232:99132.Google Scholar
Daley, P. E. J. 1992. Two new cornutes from the Lower Ordovician of Shropshire and southern France. Palaeontology, 35:127148.Google Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. L. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529555.Google Scholar
Domínguez, P., and Gutiérrez, J. C. 1990. Primeros representantes ibéricos del género Anatifopsis Barrande, 1872 (Homalozoa, Stylophora; Ordovícico) y su posición sistemática. Acta Geologica Salmaticensia, 168:121131.Google Scholar
Duan, J., An, S., and Zhao, D. 1986. Cambrian–Ordovician boundary and its interval biotas, southern Jilin, northeast China. Journal of Changchun College of Geology, 124 p.Google Scholar
Gill, E. D., and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology, 41:171.Google Scholar
Jaekel, O. 1901. Uber Carpoideen; eine neue Klasse von Pelmatozoen. Zeitschrift der deutschen geologischen Gesellschaft, 52:661677.Google Scholar
Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities. Symposium of the Zoological Society of London, 20:163208.Google Scholar
Jell, P. A., Burrett, C. F., and Banks, M. R. 1985. Cambrian and Ordovician echinoderms from eastern Australia. Alcheringa, 9:183208.Google Scholar
Kim, D. H., and Choi, D. K. 2000. Jujuyaspis and associated trilobites from the Mungok Formation (Lower Ordovician), Yongwol, Korea. Journal of Paleontology, 74:10311042.Google Scholar
Kobayashi, T. 1953. The Cambro–Ordovician formations and faunas of South Korea, part IV, Geology of South Korea with special reference to the limestone Plateau of Kogendo. Journal of the Faculty of Sciences (University of Tokyo), section II, 8:145293.Google Scholar
Kobayashi, T. 1960. The Cambro–Ordovician formations and faunas of South Korea, part VI. Journal of the Faculty of Sciences (University of Tokyo), section II, 12:217275.Google Scholar
Kobayashi, T. 1966. The Cambrian–Ordovician formations and faunas of South Korea, Part X, Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro–Ordovician formations of other areas. Section A, The Chosen Group of South Korea. Journal of the Faculty of Science (University of Tokyo), section II, 16:184.Google Scholar
Kobayashi, T., Yosimura, I., Iwaya, Y., and Hukasawa, T. 1942. The Yokusen geosyncline in the Chosen period—Brief notes on the geologic history of the Yokusen orogenic zone. Proceedings of the Imperial Academy of Tokyo, 18:579584.Google Scholar
Kolata, D. R., Frest, T. J., and Mapes, R. H. 1991. The youngest carpoid: occurrence, affinities and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65:844855.Google Scholar
Lefebvre, B. 2000. Les échinodermes stylophores du Massif armoricain. Bulletin de la Société des Sciences Naturelles de l'Ouest de la France, 22:101122.Google Scholar
Lefebvre, B. 2001. A critical comment on ‘ankyroids’ (Echinodermata, Stylophora). Geobios, 34:597627.Google Scholar
Lefebvre, B., and Vizcaïno, D. 1999. New Ordovician cornutes (Echinodermata, Stylophora) from Montagne Noire and Brittany (France) and a revision of the order Cornuta Jaekel, 1901. Geobios, 32:421458.Google Scholar
Martí Mus, M. 2002. The Ordovician cornute Flabellicystis rushtoni n. gen. n. sp. (Stylophora, Echinodermata) and its phylogenetic position within the group Cornuta. Paläontologische Zeitschrift, 76:99116.Google Scholar
Martí Mus, M. 2003. Flabellicarpus nom. nov., a replacement name for Flabellicystis Martí Mus, 2002 (preoccupied name). Paläontologische Zeitschrift, 77:59.Google Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora, p. 345361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: non Calcichordata. Paleontological Society Papers, 3:225248.Google Scholar
Parsley, R. L. 1998. Taxonomic revision of the Stylophora, p. 111117. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Peng, S. 1984. Cambrian–Ordovician boundary in the Cili-Taoyuan border area, northwestern Hunan, with description of relative trilobites, p. 285405. In Nanjing Institute of Geology and Palaeontology (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China, Cambrian–Ordovician Boundary, 1. Anhui Science and Technology Publishing House, Hefei.Google Scholar
Peng, S. 1990. Tremadocian stratigraphy and trilobite fauna of northwestern Hunan, 2. Trilobites from the Penjiazui Formation and the Madaoyu Formation in the Jiangnan Slope Belt. Beringeria, 2:55171.Google Scholar
Philip, G. M. 1979. Carpoids—echinoderms or chordates? Biological Reviews, 54:439471.Google Scholar
Ross, R. J. Jr., Hintze, L. F., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E. 1997. The Ibexian, lowermost Series in the North American Ordovician. U.S. Geological Survey Professional Paper, 1579:150.Google Scholar
Rozhnov, S. V. 1990. New representatives of the class Stylophora (echinoderms) (Novyye predstaviteli klassa Stylophora (iglokozhiye)). Paleontological Journal, 4:2738.Google Scholar
Shergold, J. H. 1991. The Pacoota Sandstone, Amadeus Basin, Northern Territory: stratigraphy and palaeontology. Bulletin of the Bureau of Mineral Resources of Australia, 237:193.Google Scholar
Shergold, J. H., Feist, R., and Vizcaïno, D. 2000. Early Late Cambrian trilobites of Australo–Sinian aspect from the Montagne Noire, southern France. Palaeontology, 43:599632.Google Scholar
Smith, A. B., and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of the starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Smith, A. B., and Jell, P. A. 1999. A new cornute carpoid from the Upper Cambrian (Idamean) of Queensland. Memoirs of the Queensland Museum, 43:341350.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Harvard University Museum of Comparative Zoology Special Publication, Cambridge, Massachusetts, 283 p.Google Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. Paleontological Society Papers, 3:267288.Google Scholar
Sumrall, C. D., and Sprinkle, J. 1999. Ponticulocarpus, a new cornute-grade stylophoran from the Middle Cambrian Spence Shale of Utah. Journal of Paleontology, 73:886891.Google Scholar
Sumrall, C. D., Sprinkle, J., and Guensburg, T. E. 1997. Systematics and paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology, 71:10911109.Google Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Illinois Natural History Survey, Champaign, 257 p.Google Scholar
Thoral, M. 1935. Contribution à l'étude paléontologique de l'Ordovicien inférieur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. Imprimerie de la Charité, Montpellier, 362 p.Google Scholar
Ubaghs, G. 1961. Un échinoderme nouveau de la classe des carpoïdes dans l'Ordovicien inférieur du département de l'Hérault (France). Comptes rendus des séances de l'Académie des Sciences, 253:25652567.Google Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the Uppermost Cambrian of Nevada. Journal of Paleontology, 37:11331142.Google Scholar
Ubaghs, G. 1968 (dated 1967). Stylophora, S495–S564. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, part S, Echinodermata, 1. Geological Society of America, New York.Google Scholar
Ubaghs, G. 1969. Les échinodermes “carpoïdes” de l'Ordovicien inférieur de la Montagne Noire (France). Cahiers de Paléontologie, Editions du CNRS, Paris, 110 p.Google Scholar
Ubaughs, G. 1981. Réflexions sur la nature et la fonction de l'appendice articulé des “Carpoïdes” Stylophora (Echinodermata). Annales de Paléontologie (Invertébrés), 67:3348.Google Scholar
Ubaghs, G. 1983. Echinodermata. Notes sur les échinodermes de l'Ordovicien inférieur de la Montagne Noire (France), p. 3355. In Courtessole, R., Marek, L., Pillet, J., Ubaghs, G., and Vizcaïno, D. (eds.), Calymenina, Echinodermata et Hyolitha de l'Ordovicien inférieur de la Montagne Noire (France méridionale). Mémoire de la Société d'Etudes Scientifiques de l'Aude, Carcassonne.Google Scholar
Ubaghs, G. 1994. Echinodermes nouveaux (Stylophora, Eocrinoidea) de l'Ordovicien inférieur de la Montagne Noire (France). Annales de Paléontologie, 80:107141.Google Scholar
Ubaghs, G. 1998. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire (France méridionale). Geobios, 31:809829.Google Scholar
Ulrich, E. O. 1929. Trachelocrinus, a new genus of Upper Cambrian crinoids. Journal of the Washington Academy of Sciences, 19:6366.Google Scholar
Zhou, Z., and Zhang, J. 1985. Uppermost Cambrian and lowest Ordovician trilobites of north and northeast China, p. 63163. In Nanjing Institute of Geology and Palaeontology (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China, Cambrian–Ordovician Boundary, 2. Anhui Science and Technology Publishing House, Hefei.Google Scholar