Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:22:10.808Z Has data issue: false hasContentIssue false

Lidaconus palmettoensis n. gen. and sp.: an enigmatic Early Cambrian fossil from western Nevada

Published online by Cambridge University Press:  19 May 2016

Beth R. Onken
Affiliation:
Department of Geology, University of California, Davis 95616
Philip W. Signor
Affiliation:
Department of Geology, University of California, Davis 95616

Abstract

Lidaconus palmettoensis n. gen. and sp. is a recently discovered fossil from the Lower Cambrian Harkless Formation (BonniaOlenellus Zone) in Esmeralda County, Nevada. The conoidal fossils were originally calcareous and have been replaced by silica. The cones are distinctive in their consistent morphology, the presence of weak annulations, and the lack of any internal structures such as septa, tabulae, or dissepiments. Because of the paucity of diagnostic characters due to the simple morphology and the lack of original microstructure, taxonomic affinities are uncertain.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aigner, T., Hagdorn, H., and Mundlos, R. 1978. Biohermal, biostromal and storm-generated coquinas in the Upper Muschelkalk. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen Bd., 157:4252.Google Scholar
Albers, J. P., and Stewart, J. H. 1972. Geology and mineral deposits of Esmeralda County, Nevada. Nevada Bureau of Mines and Geology Bulletin 78, 80 p.Google Scholar
Andrews, J. E. 1986. Tube-like microproblematica as environmental and stratigraphic indicators in British Jurassic lagoonal deposits. Palaios, 1:8586.Google Scholar
Barnes, R. D. 1980. Invertebrate Zoology, 4th ed. Saunders College/Holt, Rinehart and Winston, Philadelphia, 1089 p.Google Scholar
Bengtson, S. 1970. The Lower Cambrian fossil Tommotia. Lethaia, 3:363392.Google Scholar
Bengtson, S. 1977. Aspects of problematic fossils in the early Palaeozoic. Acta Universitatis Upsaliensis. Abstracts of Uppsala Dissertations from the Faculty of Science 415, 71 p.Google Scholar
Bengtson, S. 1985. Taxonomy of disarticulated fossils. Journal of Paleontology, 59:13501358.Google Scholar
Bengtson, S., and Missarzhevskii, V. V. 1981. Coeloscleritophora—a major group of enigmatic Cambrian metazoans, p. 1921. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey Open File Report 81-743.Google Scholar
Brasier, M. D. 1979. The Cambrian radiation event, p. 103159. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. Systematics Association Special Volume No. 12, Academic Press, London and New York.Google Scholar
Conway Morris, S. 1982. Wiwaxia corrugata (Matthew). A problematical Middle Cambrian animal from the Burgess Shale of British Columbia, p. 9398. In Mamet, B. and Copeland, M. J. (eds.), Proceedings of the Third North American Paleontological Convention, Montreal, Vol. 1.Google Scholar
Conway Morris, S. 1985. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Philosophical Transactions of the Royal Society, London, B 307:507582.Google Scholar
Cowen, R. 1986. The role of symbiosis in reefs through time. Fourth North American Paleontological Convention Abstracts with Programs, A10.Google Scholar
Crews, A. L. 1980. Sedimentology of a Lower Cambrian marine shelf sequence: Zabriskie Quartzite, Saline Valley Formation, and related strata, southern Great Basin, U.S.A. Unpubl. Ph.D. dissertation, University of California, Los Angeles, 152 p.Google Scholar
Day, J. H. 1967. A monograph of the Polychaeta of southern Africa. Part 2. Sedentaria. Publication number 656, Trustees of the British Museum (Natural History), London, 878 p.Google Scholar
Donovan, S. K., and Paul, C. R. C. 1985. A new possible armoured worm from the Tremadoc of Sheinton, Shropshire. Proceedings of the Geological Association, 96:8791.CrossRefGoogle Scholar
Fauchald, K. 1977. The polychaete worms: definitions and keys to the orders, families, and genera. Natural History Museum of Los Angeles County, Los Angeles, California.Google Scholar
Fisher, D. W. 1962. Small conoidal shells of uncertain affinities, p. W98W143. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Gangloff, R. A. 1976. Archaeocyatha of eastern California and western Nevada, p. 1930. In Moore, J. N. and Fritsche, A. E. (eds.), Depositional Environments of Lower Paleozoic Rocks in the White-Inyo Mountains, Inyo County, California. Society of Economic Paleontologists and Mineralogists, Pacific Section, Pacific Coast Paleogeography Field Guide 1.Google Scholar
Glaessner, M. F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Journal of the Geological Society of London, 132:259275.CrossRefGoogle Scholar
Horowitz, A. S., and Potter, P. E. 1971. Introductory Petrography of Fossils. Springer-Verlag, New York, p. 6062.Google Scholar
Howell, B. F. 1962. Worms, p. W144W177. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Landing, E. 1984. Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian problematica). Journal of Paleontology, 58:13801398.Google Scholar
Leeder, M. R. 1982. Sedimentology: Process and Product. George Allen and Unwin (Publishers) Ltd., London, 344 p.Google Scholar
Lochman, C. 1956. Stratigraphy, paleontology and paleogeography of the Elliptocephala asaphoides strata in Cambridge and Hoosick Quadrangles, New York. Geological Society of America Bulletin, 67:13311396.Google Scholar
Majewske, O. P. 1969. Recognition of Invertebrate Fossil Fragments in Rocks and Thin Sections. International Sedimentary Petrographical series, Vol. 13, E. J. Brill, Leiden, p. 2021.Google Scholar
McKee, E. H. 1968. Geology of the Magruder Mountain Area, Nevada–California. Contributions to General Geology. United States Geological Survey Bulletin 1251-H, 40 p.Google Scholar
Missarzhevskii, V. V. 1981. Status of hyolithids, p. 118121. In Raaben, M. E. (ed.), The Tommotian Stage and the Cambrian Lower Boundary Problem. Amerind Publishing Co. Pvt. Ltd., New Delhi.Google Scholar
Mount, J. F., and Signor, P. W. 1985. Early Cambrian innovation in shallow subtidal environments: paleoenvironments of Early Cambrian shelly fossils. Geology, 13:730733.Google Scholar
Nelson, C. A. 1962. Lower Cambrian-Precambrian succession, White-Inyo Mountains, California. Geological Society of America Bulletin, 73:139144.Google Scholar
Nelson, C. A. 1976. Late Precambrian-Early Cambrian stratigraphic and faunal succession of eastern California and the Precambrian-Cambrian boundary, p. 3142. In Moore, J. N. and Fritsche, A. E. (eds.), Depositional environments of Lower Paleozoic rocks in the White-Inyo Mountains, Inyo County, California. Society of Economic Paleontologists and Mineralogists, Pacific Section, Pacific Coast Paleogeography Field Guide 1.Google Scholar
Nelson, C. A. 1978. Late Precambrian-Early Cambrian stratigraphic and faunal succession of eastern California and the Precambrian-Cambrian boundary. Geological Magazine, 115:121126.Google Scholar
Rozanov, A. Yu., and Debrenne, F. 1974. Age of archaeocyathid assemblages. American Journal of Science, 274:833848.CrossRefGoogle Scholar
Runnegar, B., Pojeta, J. Jr., Morris, N. J., Taylor, J. D., Taylor, M. E., and McClung, G. 1975. Biology of the Hyolitha. Lethaia, 8:181191.Google Scholar
Signor, P. W., McMenamin, M. A. S., Gevirtzman, D. A., and Mount, J. F. 1983. Two new pre-trilobite faunas from western North America. Nature, 303:415418.CrossRefGoogle Scholar
Signor, P. W., Mount, J. F., and Onken, B. R. 1987. A pre-trilobite shelly fauna from the White-Inyo region of eastern California and western Nevada. Journal of Paleontology, 61:425438.Google Scholar
Stewart, J. H. 1970. Upper Precambrian and Lower Cambrian strata in the southern Great Basin, California and Nevada. United States Geological Survey Professional Paper 620, 206 p.CrossRefGoogle Scholar
Stewart, J. H., and Suczek, C. A. 1977. Cambrian and latest Precambrian paleogeography and tectonics in the western United States, p. 117. In Stewart, J. H., Stevens, C. H., and Fritsche, A. E. (eds.), Paleozoic Paleogeography of the Western United States. Society of Economic Paleontologists and Mineralogists, Pacific Section, Pacific Coast Paleogeography Symposium 1.Google Scholar
Walcott, C. D. 1911. Cambrian geology and paleontology II: 5. Middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57:109145.Google Scholar
Yochelson, E. L. 1977. Agmata, a proposed extinct phylum of Early Cambrian age. Journal of Paleontology, 51:437454.Google Scholar
Yochelson, E. L. 1981. A survey of Salterella (phylum Agmata), p. 244248. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey Open File Report 81-743.Google Scholar
Yochelson, E. L., Pierce, J. W., and Taylor, M. E. 1970. Salterella from the Lower Cambrian of Central Nevada. United States Geological Survey Professional Paper 643-H, 7 p.Google Scholar
Zhuravleva, I. T. 1970. Marine faunas and Lower Cambrian stratigraphy. American Journal of Science, 269:417445.CrossRefGoogle Scholar