Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T11:05:49.426Z Has data issue: false hasContentIssue false

Morphometric patterns in Middle Triassic Neogondolella mombergensis (Conodonta), Fossil Hill, Nevada

Published online by Cambridge University Press:  19 May 2016

Scott M. Ritter*
Affiliation:
School of Geology, Oklahoma State University, Stillwater 74078

Abstract

The Fossil Hill Member of the Prida Formation (Fossil Hill, Nevada) yields one of the most continuous records of Middle Triassic conodont evolution currently known. Because of different taxonomic viewpoints, this record has been alternately interpreted to represent either morphological stasis or gradual, biostratigraphically significant morphogenesis. Univariate and multivariate morphometric analysis of 18 successive Neogondolella Pa element populations suggests that the majority of specimens at Fossil Hill (including N. constricta emend. sensu Nicora and Kovacs, 1984) belong to a single, morphologically diverse species, Neogondolella mombergensis (Tatge). Time series of individual character means from 18 stratigraphic horizons in the Fossil Hill display nondirectional morphologic trends for which a random walk model cannot be rejected. Time series of transformed multivariate means constitute biologs that may prove useful in regional correlation.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carey, S. P. 1984. Conodont biofacies of the Triassic of northwestern Nevada, p. 295305. In Clark, D. L. (ed.), Conodont biofacies and provincialism. Geological Society of America Special Paper 196.CrossRefGoogle Scholar
Dzik, J., and Trammer, J. 1980. Gradual evolution of conodon-tophorids in the Polish Triassic. Acta Palaeontologica Polonica, 25:5586.Google Scholar
Gauch, H. G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, England, 298 p.CrossRefGoogle Scholar
Gould, S. J., and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3:115151.Google Scholar
Jolicoeur, P., and Mosimann, J. E. 1960. Size and shape variation in the painted turtle. A principal components analysis. Growth, 24:339354.Google Scholar
Krystyn, L. 1980. Stratigraphy of the Hallstatt region, p. 6980. In Schonlaub, H. P. (ed.), Second European Conodont Symposium Guidebook and Abstracts. Geological Survey of Austria, Vienna, Austria.Google Scholar
Macleod, N., and Carr, T. R. 1987. Morphometrics and the analysis of shape in conodonts, p. 168187. In Austin, R. L. (ed.), Conodonts: Investigative Techniques and Applications. Ellis Horwood Limited, Chichester, England.Google Scholar
Mosher, L. C., and Clark, D. L. 1965. Middle Triassic conodonts from the Prida Formation of northwestern Nevada. Journal of Paleontology, 42:947953.Google Scholar
Nichols, K. M., and Silberling, N. J. 1977. Stratigraphy and depositional history of the Star Peak Group (Triassic), northwestern Nevada. Geological Society of America Special Paper 178, 73 p.Google Scholar
Nicora, A., and Kovacs, S. 1984. Conodont fauna from the Rotelliforme, Meeki and Occidentalis zones (Middle Triassic) of Humboldt Range, Nevada, Western-North America. Rivisita Italiana di Paleontologia e Stratigrafia, 90:135164.Google Scholar
Parker, W. C., Arnold, A. J., and Berggren, W. A. 1986. Analog morphocorrelation: a new technique with implications for high resolution stratigraphy. Palaois, 1:183188.CrossRefGoogle Scholar
Rao, C. R. 1964. The use and interpretation of principal components analysis in applied research. Sankhya, 26:329358.Google Scholar
Raup, D. M., and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology, 7:200215.CrossRefGoogle Scholar
Reyment, R. A. 1970. Spectral breakdown of morphometric chrono-clines—a paleogenetic problem. Journal of the International Association for Mathematical Geology, 2:365376.CrossRefGoogle Scholar
Reyment, R. A. 1980. Morphometric Methods in Biostratigraphy. Academic Press, London, England, 175 p.Google Scholar
Reyment, R. A. 1985. Multivariate morphometrics and analysis of shape. Journal of the International Association of Mathematical Geology, 17:591609.CrossRefGoogle Scholar
Reyment, R. A., and Sandberg, P. 1963. Biometric study of Barramites subdifficilus (Karakasch). Palaeontology, 6:727730.Google Scholar
Reyment, R. A., Blackith, R. E., and Campbell, N. A. 1984. Multivariate Morphometrics, 2nd ed.Academic Press, London, England, 233 p.Google Scholar
Silberling, N. J., and Nichols, K. M. 1982. Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada. U.S. Geological Survey Professional Paper 1207, 77 p.Google Scholar
Teissier, G. 1938. Un essai d'analyse factorielle. Les variants sexuels de Maia squinada. Biotypologie, 7:7396.Google Scholar
Wallis, W. A., and Roberts, H. V. 1956. Statistics, a New Approach. The Free Press, Glencoe, New York, 646 p.Google Scholar