Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:46:53.503Z Has data issue: false hasContentIssue false

A new, giant ricinuleid (Arachnida, Ricinulei), from the Pennsylvanian of Illinois, and the identification of a new, ontogenetically stable, diagnostic character

Published online by Cambridge University Press:  23 December 2020

Niall Whalen
Affiliation:
Department of Geology, University of Kansas, Lawrence, Kansas, USA Present address: Department of Biological Science, Florida State University, Tallahassee, FL32306, USA
Paul Selden*
Affiliation:
Department of Geology, University of Kansas, Lawrence, Kansas, USA Natural History Museum, London, LondonSW7 5BD, UK
*
*Corresponding author

Abstract

A new fossil ricinuleid, Curculioides bohemondi n. sp., from the Pennsylvanian Energy Shale of Illinois is described from a single specimen. It is the largest ricinuleid species yet described, living or extinct. The Energy Shale represents a new geographic locale for fossil ricinuleids, a sparsely distributed group. The species is distinguished from other members within the genus by the possession of very large (0.09 mm) carapace tubercles at a very low (30 mm-2) density. Statistical analyses are performed on extant and fossil ricinuleids to determine how their tubercles change throughout ontogeny, culminating in the recovery of a new ontogenetically stable diagnostic character: the tubercle coefficient (a measure of the size of the tubercles relative to body size).

UUID: http://zoobank.org/aa9f2de5-c49d-4f70-bba5-db12fdee406f.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adis, J.U., Platnick, N.I., de Morais, J.W., and Gomes Rodrigues, J.M., 1989, On the abundance and ecology of Ricinulei (Arachnida) from central Amazonia, Brazil: Journal of the New York Entomological Society, v. 97, p. 133140.Google Scholar
Adis, J.U., Messner, B., and Platnick, N.I., 1999, Morphological structures and vertical distribution in the soil indicate facultative plastron respiration in Cryptocellus adisi (Arachnida, Ricinulei) from central Amazonia: Studies on Neotropical Fauna and Environment, v. 34, p. 19.CrossRefGoogle Scholar
Baird, G.C., 1979, Lithology and fossil distribution, Francis Creek Shale in northeastern Illinois, in Nitecki, M.H., ed., Mazon Creek Fossils: New York, Academic Press, p. 4167.CrossRefGoogle Scholar
Baird, G.C., Sroka, S.D., Shabica, C.W., and Beard, T.L., 1985, Mazon Creek-type fossil assemblages in the U.S. Midcontinent Pennsylvanian: their recurrent character and palaeoenvironmental significance: Philosophical Transactions of the Royal Society of London B, v. 311, p. 8799.Google Scholar
Ballesteros, J.A., and Sharma, P.P., 2019, A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error: Systematic Biology, v. 68, p. 896917.CrossRefGoogle ScholarPubMed
Botero-Trujillo, R., and Valdez-Mondragón, A., 2016, A remarkable new species of the magnus species-group of Cryptocellus (Arachnida, Ricinulei) from Ecuador, with observations on the taxonomy of the New World genera: Zootaxa, v. 4107, p. 321327.CrossRefGoogle ScholarPubMed
Brauckmann, C., 1987, Neue Arachniden (Ricinuleida, Trigonotarbida) aus dem Namurium B von Hagen-Vorhalle (Ober-Karbon; West-Deutschland): Dortmunder Beiträge der Landeskunde, Naturwissenschaftliche Mitteilungen, v. 21, p. 97109.Google Scholar
Buckland, W., 1837, The Bridgewater Treatises on the Power, Wisdom and Goodness of God as Manifested in the Creation. Treatise IV. Geology and Mineralogy Considered with Reference to Natural Theology, Second Edition: London, William Pickering, 129 p.Google Scholar
Burk, M.K., Deshowitz, M.P., and Utgaard, J.E., 1987, Facies and depositional environments of the Energy Shale Member (Pennsylvanian) and their relationship to low-sulfur coal deposits in southern Illinois: Journal of Sedimentary Research, v. 57, p. 10601067.Google Scholar
Cecil, C.B., 1990, Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks: Geology, v. 18, p. 533536.2.3.CO;2>CrossRefGoogle Scholar
Chamberlin, R.V., and Ivie, W., 1938, Arachnida of the orders Pedipalpida, Scorpionida and Ricinulida, in Pearse, A.S., and Banks, N., eds, Fauna of the Caves of Yucatan: Carnegie Institution of Washington Publication, v. 491, p. 101107.Google Scholar
Clements, T., Purnell, M., and Gabbott, S., 2018, The Mazon Creek Lagerstätte: a diverse late Paleozoic ecosystem entombed within siderite concretions: Journal of the Geological Society, v. 176, p. 111.Google Scholar
Cockerell, T.D.A., 1916, Notes. Curculioididae nom. nov. for Holotergidae Petrunkevitch, 1913: Journal of the Washington Academy of Sciences, v. 6, p. 236.Google Scholar
Cokendolpher, J.C., and Enríquez, T., 2004, A new species and records of Pseudocellus (Arachnida: Ricinulei: Ricinoididae) from caves in Yucatán and Belize: Texas Memorial Museum, Speleological Monographs, v. 6, p. 9599.Google Scholar
Cooke, J.A.L., 1967, Observations on the biology of Ricinulei (Arachnida) with descriptions of two new species of Cryptocellus: Journal of Zoology London, v. 151, p. 3142.CrossRefGoogle Scholar
Dudley, R., 1998, Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance: Journal of Experimental Biology, v. 201, p. 10431050.Google ScholarPubMed
Dunlop, J., 2010, Geological history and phylogeny of Chelicerata: Arthropod Structure and Development, v. 39, p. 124142.CrossRefGoogle ScholarPubMed
Ewing, H.E., 1929, A synopsis of the American arachnids of the primitive order Ricinulei: Annals of the Entomological Society of America, v. 22, p. 583600.CrossRefGoogle Scholar
Finnegan, S., 1935, Rarity of the archaic arachnids, Podogona (Ricinulei): Nature, v. 36, p. 186.CrossRefGoogle Scholar
Garwood, R.J., and Dunlop, J., 2014, Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders: PeerJ, v. 2, e641. https://doi.org/10.7717/peerj.641.CrossRefGoogle ScholarPubMed
Guérin-Méneville, F.-E., 1838a, Note sur l’Acanthodon et sur le Cryptostemme, nouveaux genres d'Arachnides: Revue Zoologique par la Société Cuvierienne, v. 2, p. 1014.Google Scholar
Guérin-Méneville, F.-E., 1838b, Dictionnaire pittoresque d'histoire naturelle: Paris, Bureau de Souscription, v. 7, 640 p.Google Scholar
Hansen, H.J., and Sørensen, W., 1904, On two orders of Arachnida: Opiliones, especially the suborder Cyphophthalmi, and Ricinulei, namely the family Cryptostemmatoidae: Cambridge, Cambridge University Press, 182 p.Google Scholar
Hatch, J.R., and Affolter, R.H., 2002, Geologic overview, in Hatch, J.R., and Affolter, R.H., eds., Resource Assessment of the Springfield, Herrin, Danville, and Baker Coals in the Illinois Basin: U.S. Geological Survey Professional Paper, v. 1625-D, p. C1–C20.Google Scholar
Jacobson, R.J., Goodwin, J.H., and White, W.A., 1980, Stratigraphy and mineral resources of Pennsylvanian strata in Vermilion County, Illinois, in Langenheim, R.L., and Mann, C.J., eds., Middle and Late Pennsylvanian Strata on Margin of Illinois Basin: Vermilion County, Illinois, Vermilion and Parke Counties, Indiana: SEPM, Great Lakes Section, 10th Annual Field Conference, p. 159–178.Google Scholar
Kaiser, A., Jaco Klok, C., Socha, J.J., Lee, W., Quinlan, M.C., and Harrison, J.F., 2007, Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism: Proceedings of the National Academy of Sciences of the USA, v. 104, p. 198203.CrossRefGoogle ScholarPubMed
Kosanke, R.M., Simon, J.A., Wanless, H.R., and Willman, H.B., 1960, Classification of the Pennsylvanian Strata of Illinois: Urbana, Illinois State Geological Survey Report of Investigations, v. 214, p. 184.Google Scholar
Legg, G., 1976, The external morphology of a new species of ricinuleid (Arachnida) from Sierra Leone: Zoological Journal of the Linnean Society, v. 59, p. 158.CrossRefGoogle Scholar
Levi, H.W., 1967, Adaptations of respiratory systems of spiders: Evolution, v. 21, p. 571583.CrossRefGoogle Scholar
Limentani, G.B., Ringo, M.C., Ye, F., Bergquist, M.L., and McSoreley, E.O., 2005, Beyond the t-test: statistical equivalence testing: Analytical Chemistry, v. 77, p. 221226.CrossRefGoogle ScholarPubMed
Lythgoe, J.N., 1979, The Ecology of Vision: Oxford, Clarendon, 244 p.Google Scholar
McKenzie, S., 2014, Vital Statistics: An Introduction to Health Science Statistics: Chatswood, NSW, Elsevier, 244 p.Google Scholar
Melander, A.L., 1903, Some additions to the Carboniferous terrestrial arthropod fauna of Illinois: Journal of Geology, v. 11, p. 178198.CrossRefGoogle Scholar
Mitchell, R.W., 1969, The cover illustration, Cryptocellus osorioi, (Arachnida; Ricinulei): The Southwestern Naturalist, v. 14, p. 136138.CrossRefGoogle Scholar
Naskrecki, P., 2008, A new ricinuleid of the genus Ricinoides Ewing (Arachnida, Ricinulei) from Ghana: Zootaxa, v. 1698, p. 5764.CrossRefGoogle Scholar
Nelson, W.J., 1983, Geologic disturbances in Illinois coal seams: Illinois State Geological Survey Circular, v. 530, p. 147.Google Scholar
Pelletier, Y., and McLeod, C.D., 1994, Obstacle perception by insect antennae during terrestrial locomotion: Physiological Entomology, v. 19, p. 360362.CrossRefGoogle Scholar
Petrunkevitch, A., 1945, Palaeozoic Arachnida of Illinois. An inquiry into their evolutionary trends: State of Illinois Scientific Papers, v. 3, p. 872.Google Scholar
Petrunkevitch, A., 1949, A study of Palaeozoic Arachnida: Transactions of the Connecticut Academy of Arts and Sciences, v. 37, p. 69315.Google Scholar
Pittard, K., and Mitchell, R., 1972, Comparative morphology of the life stages of Cryptocellus pelaezi (Arachnida, Ricinulei): Graduate Studies Texas Tech University, v. 1, p. 177.Google Scholar
Platnick, N.I., 1988, A new Cryptocellus (Arachnida: Ricinulei) from Brazil: Journal of the New York Entomological Society, v. 96, p. 363366.Google Scholar
Platnick, N.I., and Pass, G., 1982, On a new Guatemalan Pseudocellus (Arachnida, Ricinulei): American Museum Novitates, v. 2733, p. 16.Google Scholar
Platnick, N.I., and Shadab, M.U., 1977, On Amazonian Cryptocellus (Arachnida, Ricinulei): American Museum Novitates, v. 2633, p. 117.Google Scholar
R Core Team, 2019, R: A Language and Environment for Statistical Computing: https://www.R-project.org/.Google Scholar
Robinson, A., 2016, Equivalence: Provides Tests and Graphics for Assessing Tests of Equivalence, R package version 0.7.2.Google Scholar
Rose, E.M., Mathew, T., Coss, D.A., Lohr, B., and Omland, K.E., 2018, A new statistical method to test equivalence: an application in male and female eastern bluebird song: Animal Behavior v. 145, p. 7785.CrossRefGoogle Scholar
Salvatierra, L. and Tourinho, A.L., 2016, The integumentary ultrastructure of Cryptocellus bordoni Dumitresco and Jurvara-Bals, 1976 (Arachnida, Ricinulei): Micron, v. 81, p. 4866.CrossRefGoogle Scholar
Salvatierra, L., Tourinho, A.L., and Giribet, G., 2013, Description of the male, larva and nymphal stages of Cryptocellus iaci (Arachnida, Ricinulei), with an overview of tarsal sensilla and other integumental structures: Zootaxa, v. 3709, p. 149161.CrossRefGoogle Scholar
Scudder, S.H., 1890, Illustrations of the Carboniferous Arachnida of North America, of the orders Anthracomarti and Pedipalpi: Memoirs of the Boston Society of Natural History, v. 4, p. 3036.Google Scholar
Selden, P.A., 1992, Revision of the fossil ricinuleids: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 83, p. 595634.Google Scholar
Selden, P., and Ren, D., 2017, A review of Burmese amber arachnids: Journal of Arachnology, v. 45, p. 324343.CrossRefGoogle Scholar
Shear, W.A., and Kukalová-Peck, J., 1990, The ecology of Paleozoic terrestrial arthropods: the fossil evidence: Canadian Journal of Zoology, v. 68, p. 807834.CrossRefGoogle Scholar
Shi, G., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q., and Li, X., 2012, Age constraint on Burmese amber based on U-Pb dating of zircons: Cretaceous Research, v. 37, p. 155163.CrossRefGoogle Scholar
Shultz, J.W., 2007, A phylogenetic analysis of the arachnid orders based on morphological characters: Zoological Journal of the Linnean Society, v. 150, p. 221265.CrossRefGoogle Scholar
Sumner-Rooney, L., 2018, The kingdom of the blind: disentangling fundamental drivers in the evolution of eye loss: Integrative and Comparative Biology, v. 58, p. 372385.CrossRefGoogle ScholarPubMed
Talarico, G., Palacios-Vargas, J.G., Silva, M.F., and Alberti, G., 2005, First ultrastructural observations on the tarsal pore organ of Pseudocellus pearsei and P. boneti (Arachnida, Ricinulei): Journal of Arachnology, v. 33, p. 604612.CrossRefGoogle Scholar
Talarico, G., Palacios-Vargas, J.G., Silva, M.F., and Alberti, G., 2006, Ultrastructure of tarsal sensilla and other integument structures of two Pseudocellus species (Ricinulei, Arachnida): Journal of Morphology, v. 267, p. 441463.CrossRefGoogle Scholar
Thorell, T., 1876, Sopra alcuni Opilioni (Phalangidea) d'Europa e dell’Asia occidentale, con un quadro dei generi europei di quest’Ordine: Annali del Museo Civico di Storia Naturale di Genova, series 1, v. 8, p. 452508.CrossRefGoogle Scholar
Tourinho, A.L., and Saturnino, R., 2010, On the Cryptocellus peckorum and Cryptocellus adisi groups, and description of a new species of Cryptocellus from Brazil (Arachnida: Ricinulei): Journal of Arachnology, v. 38, p. 425432.CrossRefGoogle Scholar
Tourinho, A.L., Lo Man-Hung, N.F., and Bonaldo, A.B., 2010, A new species of Ricinulei of the genus Cryptocellus Westwood (Arachnida) from northern Brazil: Zootaxa, v. 2684, p. 6368.CrossRefGoogle Scholar
Treworgy, C.G., and Jacobson, R.J., 1985, Paleoenvironments and distribution of low-sulfur coal in Illinois: Compte Rendu, 9th International Congress of Carboniferous Stratigraphy and Geology, Urbana, Illinois, v. 4, p. 349359.Google Scholar
Valdez-Mondragón, A., Francke, O.F., and Botero-Trujillo, R., 2018, New morphological data for the order Ricinulei with the description of two new species of Pseudocellus (Arachnida: Ricinulei: Ricinoididae) from Mexico: Journal of Arachnology, v. 46, p. 114132.CrossRefGoogle Scholar
Wagner, R.H., and Winkler Prins, C.F., 2016, History and current status of the Pennsylvanian chronostratigraphic units: problems of definition and interregional correlation: Newsletters on Stratigraphy, v. 49, p. 281320.CrossRefGoogle Scholar
Walls, G.L., 1942, The Vertebrate Eye and its Adaptive Radiation: New York, Hafner Publ. Co., 785 p.Google Scholar
Willman, H.B., Atherton, E., Buschbach, T.C., Collinson, C., Frye, J.C., Hopkins, M.E., Lineback, J.A., and Simon, J.A., 1975, Handbook of Illinois Stratigraphy: Urbana, Illinois State Geological Survey Bulletin, v. 95, 1261.Google Scholar
Woodland, B.G., and Stenstrom, R.C., 1979, The occurrence and origin of siderite concretions in the Francis Creek Shale (Pennsylvanian) of northeastern Illinois, in Nitecki, M.H., ed., Mazon Creek Fossils: New York, Academic Press, p. 69103.CrossRefGoogle Scholar
Wunderlich, J., 2015, New and rare Arachnida in Cretaceous Burmese amber (Amblypygi, Ricinulei and Uropygi: Thelyphonida): Beiträge zur Araneologie, v. 9, p. 409436.Google Scholar
Wunderlich, J., 2017, New extinct taxa of the arachnid order Ricinulei, based on new fossils preserved in mid Cretaceous Burmese amber: Beiträge zur Araneologie, v. 10, p. 4871.Google Scholar