Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T13:30:38.078Z Has data issue: false hasContentIssue false

A new mitrate (Echinodermata, Stylophora) from the Tremadoc of Shropshire (England) and the origin of the Mitrocystitida

Published online by Cambridge University Press:  20 May 2016

Bertrand Lefebvre*
Affiliation:
UMR Domaines océaniques, Sciences de la Terre (paléontologie), Université de Bretagne Occidentale, 6 avenue Le Gorgeu, BP 809, F-29285 Brest cedex, France.

Abstract

Plate homologies are identified and discussed in primitive representatives of cornute and mitrate stylophorans. Comparative morphological analysis suggests that: 1) Lagynocystida are digital-bearing mitrates; 2) Peltocystida are glossal-bearing mitrates; 3) in Mitrocystitida, glossal and digital are incorporated into a closed marginal thecal frame or modified into articulated posterior spines (Anomalocystitidae); 4) Ovocarpus? circularis is synonymized with O. moncereti; 5) Chauvelia discoidalis and Mitrocystites riadanensis are both assigned to the genus Aspidocarpus; 6) Mitrocystella barrandei is assigned to the new genus Promitrocystites. The original reconstruction of Vizcainocarpus dentiger proposed by Ruta, (1997a) is modified, as a result of the identification of two additional plates in the posterior portion of the theca. The new species Vizcainocarpus rutai from the Tremadoc (Lower Ordovician) of Shropshire (England) is described and represents the oldest record of mitrocystitidan mitrates. V. rutai differs from V. dentiger in the relatively broader size of its zygal and marginals and in the presence, on the lower thecal surface, of a peripheral fringe of fibrillar stereom. A cladistic analysis of selected stylophoran taxa based on the proposed plate homologies indicates that: 1) cornutes and mitrates are sister-groups, both deriving from a Ceratocystis-like ancestor; 2) Peltocystida and Mitrocystitida are sister-groups; 3) Lagynocystida is sister-group of (Peltocystida + Mitrocystitida); 4) Lobocarpus is not a cornute but a primitive Cambrian mitrate belonging either to the stem-group of Mitrocystitida or to the stem-group of (Peltocystida + Mitrocystitida); 5) Anomalocystitidae represents a family of the suborder Mitrocystitida.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1887. Système Silurien du centre de la Bohěme, Volume VII, Classe des Echinodermes, Ordre des Cystidées. Rivnac, Prague, Gerhard, Leipzig, 233 p.Google Scholar
Bather, F. H. 1913. Caradocian Cystidea from Girvan. Transactions of the Royal Society of Edinburgh, 49:359529.CrossRefGoogle Scholar
Beisswenger, M. 1994. A calcichordate interpretation of the new mitrate Eumitrocystella savilli from the Ordovician of Morocco. Paläontologische Zeitschrift, 68:443462.CrossRefGoogle Scholar
Bruguieres, J. G. 1791. Histoire naturelle des vers échinodermes. Encyclopédie Méthodique, Paris, atlas.Google Scholar
Caster, K. E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletin of American Paleontology, 34, 47 p.Google Scholar
Caster, K. E. 1954. A new carpoid from the Paraná Devonian. Anais Academia Brasileira de Ciencias, 26:123147.Google Scholar
Caster, K. E. 1983. A new Silurian carpoid echinoderm from Tasmania and a revision of the Allanicytidiidae. Alcheringa, 7:321335.CrossRefGoogle Scholar
Caster, K. E., and Eaton, J. R. 1956. Microstructure of the plates in the carpoid echinoderm Paranacystis . Journal of Paleontology 30:611614.Google Scholar
Chauvel, J. 1941. Recherches sur les cystoïdes et les carpoïdes armoricains. Mémoires de la Société Géologique et Minéralogique de Bretagne, 5, 286 p.Google Scholar
Chauvel, J. 1971. Les échinodermes carpoïdes du Paléozoïque inférieur marocain. Notes du Service Géologique du Maroc, 31:4960.Google Scholar
Chauvel, J. 1981. Etude critique de quelques échinodermes stylophores du Massif armoricain. Bulletin de la Société Géologique et Minéralogique de Bretagne, (C) 13:67101Google Scholar
Chauvel, J., and Nion, J. 1977. Echinodermes (Homalozoa: Cornuta et Mitrata) nouveaux pour l'Ordovicien du Massif armoricain et conséquences paléogéographiques. Geobios, 10:3549.CrossRefGoogle Scholar
Craske, A. J., and Jefferies, R. P. S. 1989. A new mitrate from the Upper Ordovician of Norway and a new approach to subdividing a plesion. Palaeontology, 32:6999.Google Scholar
Cripps, A. P. 1988. A new species of stem-group chordate from the Upper Ordovician of Northern Ireland. Palaeontology, 31:10531077.Google Scholar
Cripps, A. P. 1989. A new stem-group chordate (Cornuta) from the Llandeilo of Czechoslovakia and the cornute-mitrate transition. Zoological Journal of the Linnean Society, 96:4985.CrossRefGoogle Scholar
Cripps, A. P. 1990. A new stem-craniate from the Ordovician of Morocco and the search for the sister group of the craniata. Zoological Journal of the Linnean Society, 100:2771.CrossRefGoogle Scholar
Cripps, A. P. 1991. A cladistic analysis of the cornutes (stem chordates). Zoological Journal of the Linnean Society, 102:333366.CrossRefGoogle Scholar
Cripps, A. P., and Daley, P. E. J. 1994. Two cornutes from the Middle Ordovician (Llandeilo) of Normandy, France, and a reinterpretation of Milonicystis kerfornei. Palaeontographica, Abt. A, 232:99132.Google Scholar
Daley, P. E. J. 1992. Two new cornutes from the Lower Ordovician of Shropshire and Southern France. Palaeontology, 35:127148.Google Scholar
Derstler, K. 1979. Biogeography of the stylophoran carpoids (Echinodermata), p. 91109. In Gray, J. and Boucot, A. J., (eds.), Historical Biogeography, Plate Tectonics and the Changing Environment. Oregon State University Press, Corvallis.Google Scholar
Fortey, R. A., and Owens, R. M. 1991. A trilobite fauna from the highest Shineton Shales in Shropshire, and the correlation of the latest Tremadoc. Geological Magazine, 128:437464.CrossRefGoogle Scholar
Gill, E. D., and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology, 41:171.Google Scholar
Gutierrez Marco, J. C., and Melendez, B. 1987. Nuevos hallazgos de Estilóforos (Homalozoos) en los materiales ordovícicos de la zona Centroibérica. Col-Pa, 41:4150.Google Scholar
Henry, J.-L., Lefebvre, B., and Chauvin, D. 1997. Stratification thermique probable des eaux marines sur la marge gondwanienne (Massif Armoricain) pendant l'Ordovicien (Llanvirn): implications paléogéographiques. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 205:373392.CrossRefGoogle Scholar
Jaekel, O. 1901. Uber Carpoideen; eine neue Klasse von Pelmatozoen. Zeitschrift der deutschen geologischen Gesellschaft, 52:661677.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologische Zeitschrift, 3:1128.CrossRefGoogle Scholar
Jefferies, R. P. S. 1968. The subphylum Calcichordata (Jefferies 1967) primitive fossil chordates with echinoderm affinities. Bulletin of the British Museum (Natural History), 16:243339.Google Scholar
Jefferies, R. P. S. 1969. Ceratocystis perneri Jaeckel—A Middle Cambrian chordate with echinoderm affinities. Palaeontology, 12:494535.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of Amphioxus . Philosophical Transactions of the Royal Society (B), 265:409469.Google Scholar
Jefferies, R. P. S. 1979. The origin of chordates—a methodological essay, p. 443477. In R House, M. (ed.), The origin of major invertebrate groups. Academic Press, London and New York. Systematics Association Special Volume, 12Google Scholar
Jefferies, R. P. S. 1981. In defence of the calcichordates. Zoological Journal of the Linnean Society, 73:351396.CrossRefGoogle Scholar
Jefferies, R. P. S. 1984. Locomotion, shape, ornament, and external ontogeny in some mitrate calcichordates. Journal of Vertebrate Paleontology, 4:292319.CrossRefGoogle Scholar
Jefferies, R. P. S. 1986. The ancestry of the vertebrates. British Museum (Natural History) and Cambridge University Press, 376 p.Google Scholar
Jefferies, R. P. S. 1987. The chordates—a preliminary note, p. 285290. In A Fortey, R. and Owens, R. M. (eds.), The Arenig Series in South Wales: stratigraphy and palaeontology. Bulletin of the British Museum (Natural History) Geology, 41.Google Scholar
Jefferies, R. P. S. 1991. Two types of bilateral symmetry in the Metazoa: chordate and bilaterian, p. 94127. In Bock, G. R. & Marsch, J. (ed.), Biological asymmetry and handedness. Wiley, Chichester (Ciba Foundation Symposium 162)Google Scholar
Jefferies, R. P. S., and Lewis, D. N. 1978. The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Philosophical Transactions of the Royal Society (B), 282:205323.Google Scholar
Jefferies, R. P. S., Lewis, M., and Donovan, S. K. 1987. Protocystites menevensis—A stem-group chordate (Cornuta) from the Middle Cambrian of South Wales. Palaeontology, 30:429484.Google Scholar
Jefferies, R. P. S., and Prokop, R. J. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships. Biological Journal of the Linnean Society, 4:69115.CrossRefGoogle Scholar
Kirk, E. 1911. The structure and relationships of certain eleutherozoic Pelmatozoa. U. S. National Museum Proceedings, 41, 137 p.Google Scholar
Kolata, D. R., Frest, T. J., and Mapes, R. H. 1991. The youngest carpoid: occurence, affinities and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65:844855.CrossRefGoogle Scholar
Kolata, D. R., and Jollie, M. 1982. Anomalocystitid mitrates (Stylophora-Echinodermata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the Upper Mississipi Valley Region. Journal of Paleontology, 56:631653.Google Scholar
Lefebvre, B., Racheboeuf, P., and David, B. 1998. Homologies in stylophoran echinoderms, p. 103109. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Lefebvre, B., and Vizcaino, D. 1999. New Ordovician cornutes (Echinodermata, Stylophora) from Montagne Noire and Brittany (France) and a revision of the Order Cornuta Jaekel 1901. Geobios, 32:421458.CrossRefGoogle Scholar
Nichols, D. 1972. The water-vascular system in living and fossil echinoderms. Palaeontology, 15:519538.Google Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora, p. 345361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm phylogeny and evolutionary biology. Clarendon Press, OxfordGoogle Scholar
Parsley, R. L. 1991. Review of selected North American mitrate stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology, 100:557.Google Scholar
Parsley, R. L. 1994. Mitrocystitid functional morphology, evolution and their relationships with other primitive echinoderm classes, p. 167172. In David, B., Guille, A., Féral, J.-P., and Roux, M. (eds.), Echinoderms through time. Balkema, Rotterdam.Google Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: non Calcichordata. Paleontological Society Papers, 3:225248.CrossRefGoogle Scholar
Parsley, R. L. 1998. Taxonomic revision of the Stylophora, p. 111117. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Peterson, K. J. 1995. A phylogenetic test of the calcichordate scenario. Lethaia, 28:2538.CrossRefGoogle Scholar
Philip, G. M. 1979. Carpoids—echinoderms or chordates? Biological Reviews, 54:439471.CrossRefGoogle Scholar
Pompeckj, J. F. 1896. Die Fauna des Cambrium von Tejrovic und Skrej in Böhmen. Jahrbuch der [kaiserlich-koeniglichen] geologischen Reichsanstalt, 1895, 45:495614.Google Scholar
Ruta, M. 1997a. A new mitrate from the Lower Ordovician of Southern France. Palaeontology, 40:363383.Google Scholar
Ruta, M. 1997b. First record of the mitrate Barrandeocarpus from England. Paläontologische Zeitschrift, 71:97105.CrossRefGoogle Scholar
Ruta, M. 1999a. Protocytidium gen. nov., a new anomalocystitid mitrate from the Victorian latest Ordovician and evolution of the Allanicytidiidae. Memoirs of the Queensland Museum, 43:353376.Google Scholar
Ruta, M. 1999b. Adoketocarpus gen. nov., a mitrate from the Ludlovian Kilmore Siltstone and Lochkovian Humevale Formation of central Victoria. Memoirs of the Queensland Museum, 43:377398.Google Scholar
Ruta, M. 1999c. A cladistic analysis of the anomalocystitid mitrates. Zoological Journal of the Linnean Society, 127:345421.CrossRefGoogle Scholar
Ruta, M. 1999d. A new stylophoran echinoderm, Juliaecarpus milnerorum, from the late Ordovician Upper Ktaoua Formation of Morocco. Bulletin of the Natural History Museum London, 55:4759.Google Scholar
Ruta, M., and Theron, J. N. 1997. Two Devonian mitrates from South Africa. Palaeontology, 40:201243.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata, p. 375398. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.CrossRefGoogle Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3. 1.1. Illinois Natural History Survey. Champaign, 257 p.Google Scholar
Thoral, M. 1935. Contribution à l'étude paléontologique de l'Ordovicien inférieur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. Imprimerie de la Charité, Montpellier, 362 p.Google Scholar
Ubaghs, G. 1961a. Un échinoderme nouveau de la classe des carpoïdes dans l'Ordovicien inférieur du département de l'Hérault (France). Comptes rendus des séances de I'Académie des Sciences, 253:25652567.Google Scholar
Ubaghs, G. 1961b. Sur la nature de l'organe appelé tige ou pédoncule chez les Carpoïdes Cornuta et Mitrata. Comptes rendus des séances de l'Académie des Sciences, 253:27382740.Google Scholar
Ubaghs, G. 1967a. Stylophora, p. S495S564. In C Moore, R. (ed.), Treatise on Invertebrate Paleontology, part S, Echinodermata, 1. Geological Society of America, New York.Google Scholar
Ubaghs, G. 1967b. Le genre Ceratocystis Jaekel (Echinodermata, Stylophora). University of Kansas Paleontological Contributions, 22, 16p.Google Scholar
Ubaghs, G. 1969. Les échinodermes carpoïdes de l'Ordovicien inférieur de la Montagne Noire (France). Cahiers de Paléontologie, Editions du CNRS, Paris, 110 p.Google Scholar
Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Review of Earth and Planetary Sciences, 3:7998.CrossRefGoogle Scholar
Ubaghs, G. 1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchécoslovaquie. Paläontologische Zeitschrift, 53:98119.CrossRefGoogle Scholar
Ubaghs, G. 1981. Réflexions sur la nature et la fonction de l'appendice articulé des carpoïdes Stylophora (Echinodermata). Annales de Paléontologie (Invertébrés), 67:3348.Google Scholar
Ubaghs, G. 1991. Deux Stylophora (Homalozoa, Echinodermata) nouveaux pour l'Ordovicien inférieur de la Montagne Noire (France méridionale). Paläontologische Zeitschrift, 65:157171.CrossRefGoogle Scholar
Ubaghs, G. 1994. Echinodermes nouveaux (Stylophora, Eocrinoidea) de l'Ordovicien inférieur de la Montagne Noire (France). Annales de Paléontologie, 80:107141.Google Scholar
Ubaghs, G. 1998. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire (France méridionale). Geobios, 31:809829.CrossRefGoogle Scholar
Vizcaíno, D., and Lefebvre, B. 1999. Les échinodermes du Paléozoïque inférieur de Montagne Noire: biostratigraphie et paléodiversité. Geobios, 32:353364.CrossRefGoogle Scholar
Woods, I. S., and Jefferies, R. P. S. 1992. A new stem-group chordate from the Lower Ordovician of South Wales, and the problem of locomotion in boot-shaped cornutes. Palaeontology. 35:125.Google Scholar