Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T23:00:02.821Z Has data issue: false hasContentIssue false

A new record of Mastotermes from the Eocene of Germany (Isoptera: Mastotermitidae)

Published online by Cambridge University Press:  14 July 2015

Torsten Wappler
Affiliation:
Hessisches Landesmuseum Darmstadt, Geologisch-Paläontologische und Mineralogische Abteilung, Friedensplatz 1, D-64283 Darmstadt, Germany
Michael S. Engel
Affiliation:
Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Boulevard, Dyche Hall, University of Kansas, Lawrence 66045-7163

Extract

Termites (order Isoptera) are highly eusocial members of the superorder Dictyoptera. Species generally live in large, highly organized colonies with morphologically specialized worker and gyne castes, and in some lineages a soldier caste also occurs. The termites play an essential ecological role in the decomposition and recycling of a nutritionally poor, highly resistant, but extremely abundant substance: lignocellulose. This digestion is aided by symbionts (either intestinal Protista in lower termites, or fungi or intestinal bacteria in higher termites). In addition, methane excretion from termites contributes 2%–5% of the partial pressure of this gas in the Earth's atmosphere (Sugimoto et al., 2000). Considering all of these factors it is easy to understand why the approximately 2,900 termite species are among the most significant insects in many ecosystems throughout the world.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M. 1950. The phylogeny of termite genera based on imago-worker mandibles. Bulletin of the American Museum of Natural History, 95:3786.Google Scholar
Armbruster, L. 1941. Über Insektenstaaten der Vorwelt. 1. Miocäne Randecker Termiten. Archiv für Bienenkunde, 22:343.Google Scholar
Collins, R. L. 1925. A lower Eocene termite from Tennessee. American Journal of Science, 9:406410.CrossRefGoogle Scholar
Crampton, G. C. 1923. A comparison of the terminal abdominal structures of the adult alate female of the primitive termite Mastotermes darwiniensis with those of the roach Periplaneta americana . Bulletin of the Brooklyn Entomological Society, 28:8593.Google Scholar
Deitz, L. L., Nalepa, C., and Klass, K.-D. 2003. Phylogeny of the Dictyoptera re-examined (Insecta). Entomologische Abhandlungen, 61:6991.Google Scholar
Desneux, J. 1904a. A propos de la phylogénie des Termitides. Annales de la Société Entomologique de Belgique, 48:278286.Google Scholar
Desneux, J. 1904b. Isoptera, fam. Termitidae, p. 152. In Wytsman, P. (ed.), Genera Insectorum. Vol. 25. Wytsman, Bruxelles, 52 p.Google Scholar
Donovan, S. E., Jones, D. T., Sands, W. A., and Eggleton, P. 2000. Morphological phylogenetics of termites (Isoptera). Biological Journal of the Linnean Society, 70:467513.CrossRefGoogle Scholar
Emerson, A. E. 1933. A revision of the genera of fossil and Recent Termopsinae (Isoptera). University of California Publications in Entomology, 6:165195.Google Scholar
Emerson, A. E. 1965. A review of the Mastotermitidae (Isoptera), including a new fossil genus from Brazil. American Museum Novitates, 2236:146.Google Scholar
Emerson, A. E. 1968. Cretaceous insects from Labrador. 3. A new genus and species of termite (Isoptera: Hodotermitidae). Psyche, 74:276289.CrossRefGoogle Scholar
Engel, M. S., and Krishna, K. 2004. Family-group names for termites (Isoptera). American Museum Novitates, 3432:19.2.0.CO;2>CrossRefGoogle Scholar
Fontes, L. R., and Vulcano, M. A. 1998. Cupins fosseis do Novo Mundo, p. 243295. In Fontes, L. R. and Berti Filho, E. (eds.), Cupins: O Desafio do Conhecimento. FEALQ, Piracicaba.Google Scholar
Froggatt, W. W. 1897. Australian Termitidae, Pt. II. Proceedings of the Linnean Society of New South Wales, 21:510552.CrossRefGoogle Scholar
Göppert, H. R. 1855. Die Tertiäre Flora von Schossnitz in Schlesien. Heyn'sche Buchhandlung, Görlitz, xviii + 52 p.Google Scholar
Grimaldi, D., and Engel, M. S. 2005. Evolution of the Insects. Cambridge University Press, New York, xv + 755 p.Google Scholar
Heer, O. 1849. Die Insektenfauna der Tertiärgebilde von Oeningen und von Radoboj in Croatien: Zweite Abtheilung: Heuschrecken, Florfliegen, Aderflügler, Schmetterlinge und Fliegen. Engelmann, Leipzig, iv + 264 p.Google Scholar
Holmgren, N. 1911. Termitenstudien. 2. Systematik der Termiten. Die Familien Mastotermitidae, Protermitidae und Mesotermitidae. Kungliga Svenska Vetenskaps-Akademiens Handlingar, 46:186.Google Scholar
Jarzembowski, E. A. 1981. An early Cretaceous termite from southern England (Isoptera: Hodotermitidae). Systematic Entomology, 6:9196.CrossRefGoogle Scholar
Jarzembowski, E. A. 1991. New insects from the Weald Clay of the Weald. Proceedings of the Geological Association, 102:93108.CrossRefGoogle Scholar
Kambhampati, S., Kjer, K. M., and Thorne, B. L. 1996. Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S rRNA gene. Insect Molecular Biology, 5:229238.CrossRefGoogle Scholar
Krishna, K. 1990. Isoptera. Bulletin of the American Museum of Natural History, 195:7681.Google Scholar
Krishna, K., and Emerson, A. E. 1983. A new fossil species of termite from Mexican amber, Mastotermes electromexicus (Isoptera, Mastotermitidae). American Museum Novitates, 2767:18.Google Scholar
Krishna, K., and Grimaldi, D. 1991. A new fossil species from Dominican amber of the living Australian termite genus Mastotermes (Isoptera: Mastotermitidae). American Museum Novitates, 3021:110.Google Scholar
Krishna, K., and Grimaldi, D. 2000. A new subfamily, genus, and species of termite (Isoptera) from New Jersey Cretaceous amber, p. 133140. In Grimaldi, D. (ed.), Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden.Google Scholar
Krishna, K., and Grimaldi, D. A. 2003. The first Cretaceous Rhinotermitidae (Isoptera): a new species, genus, and subfamily in Burmese amber. American Museum Novitates, 3390:110.2.0.CO;2>CrossRefGoogle Scholar
Lacasa-Ruiz, A., and Martínez-Delclòs, X. 1986. Meiatermes: Nuevo género fósil de insecto isóptero (Hodotermitidae) de las calizas Necomienses del Montsec (Provincia de Lérida, España). Institut d'Estudis Ilerdencs, Lleida, 65 p.Google Scholar
Martínez-Delclòs, X., and Martinell, J. 1995. The oldest known record of social insects. Journal of Paleontology, 69:594599.CrossRefGoogle Scholar
Meunier, F. 1920. Quelques insectes de l'Aquitanien de Rott, Sept-Monts (Prusse rhénane). Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam, 22:727737, 891–898.Google Scholar
Nel, A. 1986. Sur trois espèces nouvelles de termites fossiles du Stampien d'Aix-en-Provence (Bouches-du-Rhône) (Dictyoptera, Hodotermitidae, Mastotermitidae). L'Entomologiste, 42:271278.Google Scholar
Nel, A., and Paicheler, J.-C. 1993. Les Isoptera fossiles. État actuel connaissances, implications paléoécologiques et paléoclimatologiques [Insecta, Dictyoptera]. Cahiers de Paléontologie, 1993:103179.Google Scholar
Pongrácz, A. 1928. Die fossilen Insekten von Ungarn, mit besonderer Berücksichtigung der Entwicklung der Europäischen Insekten-Fauna. Annales Historico-Naturales Musei Nationalis Hungarici, 25:91194.Google Scholar
Ponomarenko, A. G. 1988. New Mesozoic insects. Trudy Sovmestnaya Sovetsko-Mongol'skaya Paleontologicheskaya Ekspeditsiya, 33:7180, 94. (In Russian, with English summary) Google Scholar
Ren, D., Lu, L., Guo, Z., and Ji, S. 1995. Faunae and Stratigraphy of Jurassic–Cretaceous in Beijing and the Adjacent Areas. Geological Publishing House, Beijing, viii + [1] + 222 p. (In Chinese, with English summary) Google Scholar
Riek, E. F. 1952. Fossil insects from the Tertiary sediments at Dinmore, Queensland. University of Queensland, Department of Geology, 4:1721.Google Scholar
Rosen, K., von. 1913. Die fossilen Termiten: Eine kurtze Zusammenfassung der bis jetzt bekennten Funde. Transactions of the Second International Congress of Entomology, Oxford 1912, 2:318335.Google Scholar
Schlüter, T. 1989. Neue Daten über harzkonservierte Arthropoden aus dem Cenomanium NW-Frankreichs. Documenta Naturae, 56:5970.Google Scholar
Scudder, S. H. 1862. Material for a monograph of North American Orthoptera. Boston Journal of Natural History, 7:409480.CrossRefGoogle Scholar
Sugimoto, A., Bignell, D. E., and MacDonald, J. A. 2000. Global impact of termites on the carbon cycle and atmospheric trace gases, p. 409435. In Abe, T., Bignell, D. E., and Higashi, M. (eds.), Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Thorne, B. L., Grimaldi, D. A., and Krishna, K. 2000. Early fossil history of the termites, p. 7793. In Abe, T., Bignell, D. E., and Higashi, M. (eds.), Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Wappler, T. 2003a. Systematik, Phylogenie, Taphonomie und Paläoökologie der Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel. Clausthaler Geowissenschaften, 2:1241.Google Scholar
Wappler, T. 2003b. Die Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel. Mainzer Naturwissenschaftliches Archiv Beiheft, 27:1234.Google Scholar
Wappler, T., and Engel, M. S. 2003. The middle Eocene bee faunas of Eckfeld and Messel, Germany (Hymenoptera: Apoidea). Journal of Paleontology, 77:908921.2.0.CO;2>CrossRefGoogle Scholar
Watson, J. A. L., and Gay, F. J. 1991. Isoptera (termites), p. 330347. In Naumann, I. D. (ed.), The Insects of Australia: A Textbook for Students and Research Workers. Volume 1, second edition. Cornell University Press, Ithaca.Google Scholar
Weidner, H. 1970. Isoptera (Termiten). Handbuch der Zoologie, 4:1147.Google Scholar