Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T03:28:55.004Z Has data issue: false hasContentIssue false

New trepostomate bryozoans from the Upper Ordovician of Morocco and the temperature influence on zooid size

Published online by Cambridge University Press:  21 September 2015

Andrea Jiménez-Sánchez
Affiliation:
Center of Biology, Geosciences and Environmental Education, University of West Bohemia, Klatovská 51, 306 19 Plzen, Czech Republic 〈andreaj@unizar.es〉
Enrique Villas
Affiliation:
Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 10, 50009 Zaragoza, Spain 〈villas@unizar.es〉
Enmanuelle Vennin
Affiliation:
Biogéosciences, Université de Bourgogne, 6 bd. Gabriel, 21000 Dijon, France 〈emmanuelle.vennin@u-bourgogne.fr〉

Abstract

New Upper Ordovician trepostomate bryozoans from the eastern Anti-Atlas of Morocco have been identified. They have been collected from the lower and intermediate units of the Khabt-el-Hajar Formation, late Katian in age, representing, respectively, bryozoan-pelmatozoan meadows with siliciclastic input, degraded by wave activity in a mid-ramp setting, and outer-ramp environments with marly substrates. Ten species of the genera Cyphotrypa, Calloporella, Diplotrypa, Parvohallopora, Dekayia, and Aostipora are described. Of them, three species are new: Cyphotrypa regularis Jiménez-Sánchez, Parvohallopora cystata Jiménez-Sánchez, and Aostipora elongata Jiménez-Sánchez. Univariate statistical analyses of the sub-polar Moroccan species, in addition to other congeneric species of high, middle, and low latitudes, corroborate that for the trepostomate bryozoan the temperature of the ambient water was a primary control on zooecium size variations. Nevertheless, other environmental factors, besides temperature, must have also influenced significantly the zooid size, at least in low latitudes. Our data also give further support for considering the zooecium wall thickness as a limiting factor for the zooid size increment with latitude in the trepostomates.

Type
Articles
Copyright
Copyright © 2015, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvaro, J.J., Vennin, E., Villas, E., Destombes, J., and Vizcaïno, D., 2007, Pre-Hirnantian (latest Ordovician) benthic community assemblages: controls and replacements in a siliciclastic-dominated platform of the eastern Anti-Atlas, Morocco: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 245, p. 2036.CrossRefGoogle Scholar
Arnaud, P.M., 1974, Cotribution à la bionomie marine benthique des regions antarctiques et subantarctiques: Tethys, v. 6, p. 465656.Google Scholar
Astrova, G.G., 1965, Morphologiya, istoriya razvitiya i sistema ordoviksikh I siluriyskikh mshanok (Morphology, history of development, and systematics of Ordovician and Silurian Bryozoa): Trudy Paleontologischeskogo Instituta Akademiya Nauk SSSR, v. 106, p. 1432.Google Scholar
Atkinson, D., 1994, Temperature and organism size—a biological law for ectotherms?: Advance in Ecological Research, v. 25, p. 158.CrossRefGoogle Scholar
Bassler, R.S., 1911, The early Paleozoic Bryozoa of the Baltic provinces: Bulletin of the United States National Museum, Washington, v. 77, p. 1382.Google Scholar
Bassler, R.S., 1927, Bryozoa (Silurian, Anticosti): Canada Geological Survey Memory, v. 154, p. 143168.Google Scholar
Bergmann, C., 1847, Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse: Göttinger Studien, v. 3, p. 595708.Google Scholar
Berning, B., Moissette, P., and Betzler, C., 2005, Late Miocene Bryozoa from the Guadalquivir Basin (SW Spain): eastern Atlantic and western Mediterranean environment and biogeography, in Moyano, H.I., Cancino, J.M., and Wyse Jackson, P.N., eds. Bryozoan Studies 2004: Leiden, Balkema, p. 1524.CrossRefGoogle Scholar
Billings, E., 1865, Palaeozoic fossil; containing descriptions and figures of new or littler known species of organic remains from the Silurian rocks: Geological Survey of Canada, v. 1, 426 p.Google Scholar
Boardman, R.S., 1960, Trepostomatous Bryozoa of the Hamilton Group of New York State: United States Geological Survey, Professional Paper 340, p. 1–87.CrossRefGoogle Scholar
Borg, F., 1926, Studies on Recent cyclostomatous Bryozoa: Zoologiska Bidrag fran Uppsala, v. 10, p. 181507.Google Scholar
Boulange, M.F., 1963, Sur quelques espéces nouvelles de bryozoaires de l’Ordovicien Supérieur de la Montagne Noire: Bulletin de la Société Géologique de France 7, v. Serie 5, p. 3440.CrossRefGoogle Scholar
Brown, G.D., 1965, Tropostomatous bryozoa from the Logana and Jessamine Limestones (Middle Ordovician) of the Kentucky Bluegrass region: Journal of Paleontology, v. 39, p. 9741006.Google Scholar
Buttler, C.J., 1991, A new Upper Ordovician bryozoan fauna from the Slade and Redhill Beds, South Wales: Palaeontology, v. 34, p. 77108.Google Scholar
Carrera, G.M., and Ernst, A., 2010, Darriwillian bryozoans from the San Juan Formation (Ordovician), Argentine Precordillera: Ameghiniana, v. 43, p. 343354.CrossRefGoogle Scholar
Chapelle, G., and Peck, L.S., 1999, Polar gigantism and oxygen: Nature, v. 399, p. 114115.CrossRefGoogle Scholar
Conti, S., 1990, Upper Ordovician Bryozoa from Sardinia: Palaeontographia Italica, v. 77, p. 85165.Google Scholar
Destombes, J., Hollard, H., and Willefert, S., 1985, Lower Pelaeozoic Rocks of the World, in Holland, C.H. ed., Lower Palaeozoic Rocks of Northwest and West-Central Africa, v. 4, p. 91136, Jonh Wiley and Sons.Google Scholar
d’Orbigny, A., 1850, Note sur quelques espéces nouvelles de Bryozoaires fossiles des terrains crétacés de la France, Especes de I'étage cénomanien ou de la craie chlorite: Revue et Magazine de Zoologie pure et appliquée, v. 2, p. 170181.Google Scholar
Dreyfuss, M., 1948, Contribution à l’etude géologique et paléontotologique de l’Ordovicien supérieur de la Montagne Noire: Mémoires de la Société Geologique de France, v. 58, 81 p.Google Scholar
Duncan, H., 1939, Trepostomatous Bryozoa from the Traverse Group of Michigan: Contributions from the Museum of Paleontology, University of Michigan, v. 5, p. 171270.Google Scholar
Ernst, A., and Key, M., 2007, Upper Ordovician bryozoan from the Montagne de Noire, Southern France: Journal of Systematic Palaeontology, v. 5, p. 359428.CrossRefGoogle Scholar
Fritz, M.A., 1957, Bryozoa (mainly Trepostomata) from the Ottawa Formation (Middle Ordovician) of the Ottawa-St Lawrence lowland (Ottawa-Quebec): Geological Survey of Canada Bulletin, v. 42, p. 175.Google Scholar
Hageman, S.J., Needham, L.L., and Todd, C.D., 2009, Threshold effects of food concentration on the skeletal morphology of the bryozoan Electra pilosa (Linnaeus, 1767): Lethaia, v. 42, p. 438451.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis (v 2.17e, 2013). Palaeontologia Electronica 4(1), 9p. http://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
Harper, D.A.T., Rasmussen, C.M.Ø., Liljeroth, M., Blodgett, R.B., Candela, Y., Jin, J., Percival, I.G., Rong, J-Y., Villas, V., and Zhan, R.-B., 2013, Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods: Geological Society, London, v. 38, p. 127144.CrossRefGoogle Scholar
James, U.P., 1875. Catalogue of the Lower Silurian fossils of the Cincinnati Group, Ohio and vicinity, with descriptions of some new species of corals and Polyzoa: Cincinnati, Ohio, U.P. James, 8 p.Google Scholar
Jiménez-Sánchez, A., 2009, The upper Katian (Ordovician) bryozoans from the Eastern Iberian Chains (NE Spain): Bulletin of Geosciences, v. 84, p. 687738.CrossRefGoogle Scholar
Jiménez-Sánchez, A., 2010, New monticuliporidae (Trepostomata) from the Cystoid Limestone Formation (Upper Ordovician) of the Iberian Chains (NE Spain): Geodivérsitas, v. 32, p. 177199.CrossRefGoogle Scholar
Jiménez-Sánchez, A., and Villas, E., 2010, The bryozoan dispersion into the Mediterranean margin of Gondwana during the pre-glacial Late Ordovician: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 294, p. 220231.CrossRefGoogle Scholar
Jiménez-Sánchez, A., Taylor, P.D., and Gómez, J.B., 2013, Palaeogeographical patterns in Late Ordovician bryozoan morphology as proxies for temperature: Bulletin of Geosciences, v. 88, p. 417426.CrossRefGoogle Scholar
Jiménez-Sánchez, A., Vennin, E., and Villas, E., 2015, Trepostomate bryozoans from the upper Katian (Upper Ordovician) of Morocco: gigantism in high latitude Gondwana platforms: Journal of Paleontology, v. 89, p. 195219.CrossRefGoogle Scholar
Key, M.M. Jr., 1991, The halloporid trepostome bryozoans from the Ordovician Simpson Group of Oklahoma: Journal of Paleontology, v. 65, p. 200212.CrossRefGoogle Scholar
Meddour, A., Razin, P., Jati, M., and Rubino, J.L., 2010, Les calcaires à bryozoaires de l’Ordovicien supérieur de l’Anti-Atlas oriental (Maroc): Environment de depot at analyse stratigraphique, in Strati 2010. 4th “French” Congress on Stratigraphy, p. 166.Google Scholar
Miller, S.A., 1889. North American Geology and Paleontology: Cincinnati, Ohio, Western Methodist Book Concern, 664 p.Google Scholar
Milne-Edwards, H., and Haime, J., 1851, Monographie des polypiers fossiles des terrains Paleozoiques: Archives du Muséum d'Histoíre Naturelle, Paris, v. 5, p. 102.Google Scholar
Moran, A.L., and Woods, H.A., 2012, Why might they be giants? Towards an understanding of polar gigantism: The Journal of Experimental Biology, v. v. 215, p. 19952002.CrossRefGoogle Scholar
Nicholson, H.A., 1879, On the structure and affinities of the “tabulate corals” of the Paleozoic Period, with critical descriptions of illustrative specie: Edinburgh, William Blackwood and Sons, 342 p.Google Scholar
O’Dea, A., 2005, Zooid size parallels contemporaneous oxygen isotopes in a large colony of Pentapora foliacea (Bryozoa): Marine Biology, v. 146, p. 10751081.CrossRefGoogle Scholar
O’Dea, A., and Okamura, B., 1999, Influence of seasonal variation in temperature, salinity and food availability on module size and colony growth of the estuarine bryozoan Conopeum seurati: Marine Biology, v. 135, p. 581588.CrossRefGoogle Scholar
O’Dea, A., and Okamura, B., 2000a, Intracolony variation in zooid size in cheilostome bryozoans as a new technique for investigating palaeoseasonality: Palaeogeography Palaeoclimatology Palaeoecology, v. 162, p. 319332.CrossRefGoogle Scholar
O’Dea, A., and Okamura, B., 2000b, Life history and environmental inferences through retrospective morphometric analysis of bryozoans: a preliminary study: Journal of the Marine Biological Association of the United Kingdom, v. 80, p. 11271128.CrossRefGoogle Scholar
Okamura, B., 1987, Seasonal changes in zooid size and feeding activity in epifaunal colonies of Electra pilosa, in Ross, J.R.P., ed. Bryozoa: Present and Past: Bellingham, Western Washington University, p. 197203.Google Scholar
Perry, T.G., and Hattin, D.E., 1960, Osgood (Niagaran) bryozoans from the type area: Journal of Paleontology, v. 34, p. 695710.Google Scholar
Pushkin, V.I., 1976, The genus Anaphragma (Bryozoa): Paleontological Journal, v. 10, p. 291298.Google Scholar
Pushkin, V.I., 1981, A review of the genus Calloporella: Paleontologicheskii Zhurnal, v. 4, p. 6573.Google Scholar
Singh, R.J., 1979, Trepostomatous bryozoan fauna from the Bellevue Limestone, Upper Ordovician in the tri-state area of Ohio, Indiana and Kentucky: Bulletin of American Paleontology, v. 76, 307, p. 161288.Google Scholar
Termier, H., and Termier, G., 1950, Paléontologie marocaine. II: Invértebrés de l’ére Primaire, pt. 2, Bryozoaires et Brachiopodes: Notes et Memoires, Service Geologique Marocain, v. 77, p. 120.Google Scholar
Ulrich, E.O., 1882, American Palaeozoic Bryozoa: Journal of the Cincinnati Society of Natural History, v. 5, p. 121175, 232–257.Google Scholar
Ulrich, E.O., 1883, American Paleozoic Bryozoa: Journal of the Cincinnati Society of Natural History, v. 6, p. 8292.Google Scholar
Ulrich, E.O., 1886, Report on the Lower Silurian Bryozoa with preliminary descriptions of some of the new species: Minnesota Geology and Natural History Survey Annual Report, 14th, v. 1885, p. 57103.Google Scholar
Ulrich, E.O., 1890, Palaeontology of Illinois, section VI, Palaeozoic Bryozoa, part II: Report of the Geological Survey of Illinois, v. 8, p. 283688.Google Scholar
Ulrich, E.O., 1893, On Lower Silurian Bryozoa of Minnesota: Minnesota Geology and Natural History Survey, Final Report, v. 3, p. 96332.Google Scholar
Ulrich, E.O., and Bassler, R.S., 1904, A revision of the Paleozoic Bryozoa, part II, Trepostomata: Smithsonian Miscellaneous Collections, v. 47, p. 1555.Google Scholar
Vinassa de Regny, P., 1921, Sulla cassificazione die trepostomidi: Societa Italiana di Scienze Naturali, v. 59, p. 212231.Google Scholar
Woods, H.A., Moran, A.L., Arango, C.P., Muller, L., and Shields, C., 2009, Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia: Proceedings of the Royal Society of London, v. B276, p. 10691075.Google Scholar