Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T21:24:10.062Z Has data issue: false hasContentIssue false

On Paleozoic plants from marine strata: Hexaloba finisensia new genus and species, a trigonocarpalean ovule from the Virgilian (Upper Pennsylvanian: Gzhelian) Finis Shale of Texas

Published online by Cambridge University Press:  14 July 2015

Michael T. Dunn
Affiliation:
Department of Environmental and Plant Biology, Ohio University, Athens 45701
Gene Mapes
Affiliation:
Department of Environmental and Plant Biology, Ohio University, Athens 45701
Gar W. Rothwell
Affiliation:
Department of Environmental and Plant Biology, Ohio University, Athens 45701

Abstract

Twenty permineralized ovules were recovered from a mixed marine and terrestrial assemblage from the Finis Shale near Jacksboro, Texas, USA. The strata have been dated as Virgilian (upper Pennsylvanian: Gzhelian) based on ammonoid biostratigraphy, regionally correlated based on the marine assemblage, and globally correlated based on ammonoid, fusulinacean and conodont data. These morphotaxa conform to trigonocarpalean ovules based on their three angled symmetry and the presence of a stalked nucellus attached to the integument only at the base. The ovules share many features with the genus Pachytesta but represent a new genus based on their unique exterior shape, integumentary morphology, and vascular system. In addition, these specimens represent the youngest known occurrence of trigonocarpalean ovules, thereby extending their biostratigraphic range. The presence of these plant remains in a regionally and globally correlatable marine assemblage aids correlation of continental strata with established, biostratigraphically time equivalent, marine strata.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boardman, D. R., Work, D. M., Mapes, R. H., and Barrick, J. E. 1994. Biostratigraphy of Middle and Late Pennsylvanian (Desmoinesian-Virgilian) ammonoids. Kansas Geological Survey Bulletin 232, 121 p.Google Scholar
Brongniart, A. 1874. Etudes sur les graines fossiles trouvées à l'état silicifié dans le terrain houiller de Saint-Etienne. Annales des Sciences Naturelles. A. Botanique, 20:234265.Google Scholar
Cichan, M. A., and Taylor, T. N. 1981. On the structure and morphology of the seed Pachytesta muncii n. sp. (Medullosales). Review of Paleobotany and Palynology, 34:359367.CrossRefGoogle Scholar
Combourieu, N., and Galtier, J. 1985. Nouvelles observations sur Polypterospermum, Polyophospermum, Colpospermum, et Codonospermum, ovules de Pteridospermales du Carbonifère Supérieur Français. Palaeontographica B, 196:129.Google Scholar
Drinnin, A. N., Schramke, J. M., and Crane, P. R. 1990. Stephanospermum konopeonus (Langford) comb, nov.: a medullosan ovule from the middle Pennsylvanian Mazon Creek flora of northeastern Illinois, U.S.A. Botanical Gazette, 151(3):358401Google Scholar
Galtier, J., and Phillips, T. L. 1985. Swamp vegetation from Grand’ Croix (Stephanian) and Autun (Autunian), France, and comparisons with coal-ball peats of the Illinois Basin, p. 1324. In Dutro, J. T. and Pfefferkorn, H. W. (eds.), Compte Rendu, Neuvième Congrès International de Stratigraphie de Géologie Carbonifère 5, Paleontology/Paleoecology/ Paleogeography.Google Scholar
Galtier, J., and Scott, A. C. 1981. Sur la présence de végétaux du structure conservée du Viséen dans le Poudingue Mosaïque du Stéphanien du Bassin de Saint-Etienne. Geobios, 14:529531.CrossRefGoogle Scholar
Good, C. W., Rothwell, G. W., and Taylor, T. N. 1982. A new Stephanospermum from the Appalachian Basin of North America. Review of Paleobotany and Palynology, 36:231240.CrossRefGoogle Scholar
Hall, J. W. 1954. The genus Stephanospermum in American coal balls. Botanical Gazette, 115(4):346–36Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A Geologic Time Scale. Cambridge University Press, Cambridge Massachusetts, 263 p.Google Scholar
Hoskins, J. H., and Cross, A. T. 1946. Studies in the Trigonocarpales. Pt. II, Taxonomic problems and a revision of the genus Pachytesta. American Midland Naturalist, 36(2):331361Google Scholar
Leisman, G. A., and Roth, J. 1963. A reconsideration of Stephanospermum. The Botanical Gazette, 124(3):231240CrossRefGoogle Scholar
Lesnikowska, A., and Galtier, J. 1992. Permineralized Marattiales from the Stephanian and Autunian of central France: a reinvestigation of Grandeuryella renaultii (Stur) Weiss. Review of Paleobotany and Palynology, 72(3–4):299315Google Scholar
Mapes, G., and Schabilion, J. T. 1976. Petrified pteridosperm ovules and lepidodendralean remains from the upper Mississippian of Arkansas. Botanical Society of America Miscellaneous Publications, Allen Press, Lawrence, Kansas, p. 27.Google Scholar
Mapes, R. H., and Mapes, G. 1996. Biotic destruction of terrestrial plant debris in the Late Paleozoic marine environment. Lethaia, 29:157169.CrossRefGoogle Scholar
Phillips, T. L. 1980. Stratigraphic and geographic occurrences of permineralized coal-swamp plants-Upper Carboniferous of North America and Europe, p. 2592. In Dilcher, D. L., and Taylor, T. N. (eds.), Biostratigraphy of Fossil Plants. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Ramanujam, C. G. K., Rothwell, G. W., and Stewart, W. N. 1974. Probable attachment of the Dolerotheca campanulum to a Myeloxylon-Alethopteris type frond. American Journal of Botany, 61(10):10571066Google Scholar
Reed, F. D. 1939. Structure of some Carboniferous seeds from American coal fields. Botanical Gazette, 100:769787.CrossRefGoogle Scholar
Renault, B., and Zeiller, R. 1890. Etudes sur les terrain houller de Commentry. Flore fossile II. Societe de Industrie Minerale Saint-Etienne Bulletin, 4:369742.Google Scholar
Salisbury, E. J. 1914. On the structure and relationships of Trigonocarpus shorensis, sp. nov. A new seed from the Paleozoic rocks. Annals of Botany, 28:4080.Google Scholar
Seward, A. C. 1969. Fossil Plants, Ill. Hafner Publishing, New York, 656 p.Google Scholar
Stein, W. E. Jr., Wight, D. C., and Beck, C. B. 1982. Techniques for preparation of pyrite and limonite permineralizations. Review of Paleobotany and Palynology, 36:185194.CrossRefGoogle Scholar
Stewart, W. N. 1951. A new species of Pachytesta from the Berryville locality of southwestern Illinois. American Midland Naturalist, 46(3):717742Google Scholar
Stewart, W. N., and Rothwell, G. W. 1993. Paleobotany and the Evolution of Plants. Cambridge University Press, Cambridge, Massachusetts, 521 p.Google Scholar
Stidd, B. M. 1981. The current status of medullosan seed ferns. Review of Paleobotany and Palynology, 32:63101.CrossRefGoogle Scholar
Taylor, T. N. 1962. Additional observations on Stephanospermum ovoides, a middle Pennsylvanian seed. American Journal of Botany, 49(7):794800Google Scholar
Taylor, T. N. 1965. Paleozoic seed studies: a monograph of the American species of Pachytesta . Palaeontographica B, 117:1137.Google Scholar
Taylor, T. N. 1966. Paleozoic seed studies: on the genus Hexapterospermum. American Journal of Botany, 53(2):185192Google Scholar
Taylor, T. N., and Eggert, D. A. 1969. On the structure and relationships of a new Pennsylvanian species of the seed Pachytesta. Palaeontology, 12(3):382387Google Scholar
Toomey, D. F. 1983. The paleoalgology of a “middle limestone member” (Leavenworth) of an Upper Carboniferous (Stephanian) cyclothem, Midcontinent, USA. Facies, 8:113190.CrossRefGoogle Scholar
Toomey, D. F. 1985. Paleodepositional setting of rhodoliths from the Upper Pennsylvanian (Virgilian) Salem School Limestone of Northcentral Texas, p. 299305. In F Toomey, D. and Nitecki, M. H. (eds.), Paleoalgology: Contemporary Research and Applications. Springer-Verlag, Berlin.CrossRefGoogle Scholar