Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:46:23.111Z Has data issue: false hasContentIssue false

Ontogenetic change and intra-specific variation of shell morphology in the Cretaceous nautiloid (Cephalopoda, Mollusca) Eutrephoceras clementinum (d'Orbigny, 1840) from the Ariyalur area, southern India

Published online by Cambridge University Press:  14 July 2015

Ryoji Wani
Affiliation:
1Interdisciplinary Research Center, Yokohama National University, 79-2, Tokiwadai, Hodogaya-ku, Yokohama, Japan 240-8501,
Krishnan Ayyasami
Affiliation:
2Ministry of Mines, Room No. 311, Shastri Bhawan, New Delhi 110115, India,

Abstract

Morphometric analyses of shell morphology in the Cretaceous nautiloid Eutrephoceras clementinum (d'Orbigny, 1840) (Cephalopoda, Mollusca) from the Ariyalur area, southern India, reveal ontogenetic change from hatching to maturity as well as intra-specific variation in shell morphology. the shell breadth has a negative allometric relationship with shell diameter and with whorl height, and the umbilicus diameter has a positive allometric relationship with shell diameter. This shows that shell shape became relatively thinner with less variation, and the umbilicus diameter became relatively broader with growth. the siphuncle position moves from a dorso-central to ventro-central position with growth. A constriction was recognized on the early whorl at 20 mm in shell diameter, and the interval angles of succeeding septa were changed at the 8th septum, indicating that they hatched at this stage. the bending of umbilical walls of apertures toward the center of coiling suggests that E. clementinum attained maturity at about 115 mm in shell diameter. the comparison of the shell morphology of E. clementinum with that of E. bouchardianum (d'Orbigny, 1840) reported in the literature clarifies their difference in whorl shape and umbilical size, especially in the adult stage. This kind of morphometric study of nautiloids is essential for elucidating their adaptive designs for environment and mode of life, functional shell morphology, taxonomy, phylogeny, and evolution.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, J. M., Landman, N. H., and Mutvei, H. 1987. Development of the embryonic shell of Nautilus, p. 373400. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.CrossRefGoogle Scholar
Ayyasami, K. 2006. Role of oysters in biostratigraphy: A case study from the Cretaceous of the Ariyalur area, southern India. Geosciences Journal, 10:237247.CrossRefGoogle Scholar
Bayer, U. and McGhee, G. R. Jr. 1984. Iterative evolution of Middle Jurassic ammonite faunas. Lethaia, 17:116.CrossRefGoogle Scholar
Blanford, H. F. 1861. The fossil Cephalopoda of the Cretaceous rocks of southern India (Belemnitidae-Nautilidae). Memoirs of the Geological Survey of India (Palaeontologia Indica), Series 1, 1:140.Google Scholar
Blanford, H. F. and Stoliczka, F. 1866. The fossil Cephalopoda of the Cretaceous rocks of southern India: Belemnitidae-Nautilidae by H. F. Blanford, Ammonitidae, with revision of the Nautilidae, etc. by F. Stoliczka. Memoirs of the Geological Survey of India (Palaeontologia Indica), Series 1, 1:41126.Google Scholar
Chamberlain, J. A. Jr. 1981. Hydromechanical design of fossil cephalopods, p. 289336. In House, M. R. and Senior, J. R. (eds.), The Ammonoidea. Systematic Association, Special Volume no. 18, Academic Press, London.Google Scholar
Chamberlain, J. A. Jr., Ward, P. D., and Weaver, J. S. 1981. Post-mortem ascent of Nautilus shells: implications for cephalopod paleobiogeography. Paleobiology, 7:494509.CrossRefGoogle Scholar
Chirat, R. 2001. Anomalies of embryonic shell growth in post-Triassic Nautilida. Paleobiology, 27:485499.2.0.CO;2>CrossRefGoogle Scholar
Chirat, R. and Rioult, M. 1998. Occurrence of early post-hatching Jurassic Nautilida in Normandy, France: palaeobiologic, palaeoecologic and palaeobiogeographic implications. Lethaia, 31:137148.CrossRefGoogle Scholar
Cochran, J. K., Rye, D. M., and Landman, N. H. 1981. Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology, 7:469480.CrossRefGoogle Scholar
Collins, D. and Ward, P. D. 1987. Adolescent growth and maturity in Nautilus, p. 421432. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.CrossRefGoogle Scholar
Davis, R. A., Landman, N. H., Dommergues, J., Marchand, D., and Bucher, H. 1996. Mature modifications and dimorphism in ammonoid cephalopods, p. 463539. In Landman, N. H., Tanabe, K., and Davis, R. A. (eds.), Ammonoid Paleobiology. Plenum Press, New York.CrossRefGoogle Scholar
Davis, R. A. and Mohorter, W. 1973. Juvenile Nautilus from the Fiji Islands. Journal of Paleontology, 47:925928.Google Scholar
Eichler, R. and Ristedt, H. 1966. Untersuchungen zur Frühontogenie von Nautilus pompilius (Linne). Paläontologische Zeitschrift, 40:173191.CrossRefGoogle Scholar
Fischer, J.-C. 2006. Révision Critique de la Paléontologie Française, Volume IV, Céphalopodes Crétacés. Backhuys Publishers. Leiden, 292 p.Google Scholar
Hayami, I. and Matsukuma, A. 1970. Variation of bivariate characters from the standpoint of allometry. Palaeontology, 13:588605.Google Scholar
Hirano, H. and Obata, I. 1979. Shell morphology of Nautilus pompilius and N. macromphalus. Bulletin of the National Science Museum, Series C (Geology and Paleontology), 5:113130.Google Scholar
House, M. R. 1988. Major features of cephalopod evolution, p. 116. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods, Present and Past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Hyatt, A. 1894. Phylogeny of an acquired characteristic. Proceedings of the American Philosophical Society, 32:349647.Google Scholar
Klug, C. 2004. Mature modifications, the black band, the black aperture, the black stripe, and the periostracum in cephalopods from the Upper Muschelkalk (Middle Triassic, Germany). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universitat Hamburg, 88:6378.Google Scholar
Korn, D., Bockwinkel, J., Ebbighausen, V., and Klug, C. 2003. Palaeobiogeographic and evolutionary meaning of an early Late Tournaisian ammonoid fauna from the Tafilalt of Morocco. Acta Palaeontologica Polonica, 48:7192.Google Scholar
Korn, D. and Klug, C. 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology, 29:329348.2.0.CO;2>CrossRefGoogle Scholar
Korn, D. and Klug, C. 2004. Cuboid Carboniferous ammonoids. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universitat Hamburg, 88:7998.Google Scholar
Kummel, B. 1956. Post-Triassic nautiloid genera. Bulletin of the Museum of Comparative Zoology, 114:324494.Google Scholar
Landman, N. H. 1988. Early ontogeny of Mesozoic ammonites and nautilids, p. 215228. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods, Present and Past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.Google Scholar
Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M. 1994. Early life history of Nautilus: Evidence from isotopic analyses of aquarium-reared specimens. Paleobiology, 20:4051.CrossRefGoogle Scholar
Landman, N. H., Rye, D. M., and Shelton, K. L. 1983. Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: Evidence from shell morphology and light stable isotopes. Paleobiology, 9:269279.CrossRefGoogle Scholar
Miller, A. K. 1947. Tertiary nautiloids of the Americas. Geological Society of America, Memoir 23:1234.CrossRefGoogle Scholar
Oba, T., Kai, M., and Tanabe, K. 1992. Early life history and habitat of Nautilus pompilius inferred from oxygen isotope examinations. Marine Biology, 113:211217.CrossRefGoogle Scholar
D'Orbigny, A. 1840. Paléontologie Française. Terrains Crétacés. 662 p., pls. 148.Google Scholar
Saunders, W. B. and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology, 10:195228.CrossRefGoogle Scholar
Spengler, E. 1910. Untersuchungen über die südindische Kreideformation. Die Nautiliden und Belemniten des Trichinopolydistrikts. Beiträge zur Paläontologie und Geologie Österreich-Ungarns, 23:125157.Google Scholar
Sundaram, R., Henderson, R. A., Ayyasami, K., and Stilwell, F. D. 2001. A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India. Cretaceous Research, 22:743762.CrossRefGoogle Scholar
Tanabe, K. and Shigeta, Y. 1987. Ontogenetic shell variation and streamlining of some Cretaceous ammonites: Transactions and Proceedings of the Palaeontological Society of Japan, New Series, 147:165179.Google Scholar
Tanabe, K. and Tsukahara, J. 1987. Biometric analysis of Nautilus pompilius from the Philippines and the Fiji Islands, p. 105113. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.CrossRefGoogle Scholar
Taylor, B. E. and Ward, P. D. 1983. Stable isotope studies of Nautilus macromphalus Sowerby (New Caledonia) and Nautilus pompilius L. (Fiji). Palaeogeography, Palaeoclimatology, Palaeoecology, 41:116.CrossRefGoogle Scholar
Teichert, C. and Matsumoto, T. 1987. The ancestry of the genus Nautilus, p. 2532. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus. Plenum Press, New York.CrossRefGoogle Scholar
Wani, R. 2004. Experimental fragmentation patterns of modern Nautilus shells and the implications for fossil cephalopod taphonomy. Lethaia, 37:113123.CrossRefGoogle Scholar
Wani, R. 2007. How to recognize in situ fossil cephalopods: Evidence from experiments with modern Nautilus. Lethaia, 40:305311.CrossRefGoogle Scholar
Wani, R. and Ayyasami, K. 2004. A review of the Cretaceous biostratigraphy in the Ariyalur area, southern India. Bulletin of the Mikasa City Museum, 8:115. (In Japanese with English abstract)Google Scholar
Wani, R., De Ocampo, R. S. P., Aguilar, Y. M., Zepeda, M. A., Kurihara, Y., Hagino, K., Hayashi, H., and Kase, T. 2008. First discovery of fossil Nautilus pompilius Linnaeus, 1758 (Nautilidae, Cephalopoda) from Pangasinan, northwestern Philippines. Paleontological Research, 12:8995.CrossRefGoogle Scholar
Wani, R., Kase, T., Shigeta, Y., and De Ocampo, R. 2005. New look at ammonoid taphonomy, based on field experiments with modern chambered nautilus. Geology, 33:849852.CrossRefGoogle Scholar
Ward, P. D. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautiloids. Paleobiology, 6:3243.CrossRefGoogle Scholar
Ward, P. D. 1986. Cretaceous ammonite shell shapes. Malacologia, 27:328.Google Scholar
Ward, P. D. 1987. The Natural History of Nautilus. Allen and Unwin, Boston, 267 p.Google Scholar