Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T04:49:11.012Z Has data issue: false hasContentIssue false

Oolitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia Maslov from the Upper Cambrian rocks of central Texas

Published online by Cambridge University Press:  14 July 2015

Ben R. Spincer*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EQ, UK

Abstract

The origin and affinity of the problematic Nuia Maslov is reappraised from exceptionally preserved specimens in Upper Cambrian (Sunwaptan) rocks of the Llano Uplift, central Texas. Nuia is suggested to be a radial calcitic ooid that has nucleated on fragments of reworked filamentous calcimicrobes rather than a separate microorganism as has been assumed previously. Nuia is found predominantly in intrareef grainstone accumulations, as well as in interreef grainstones, invariably accompanied by other bioclastic debris showing similar radial calcite ooid overgrowths.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahr, W. M. 1967. Origin and paleoenvironment of some Cambrian algal reefs, Mason County area, Texas. Unpublished Ph.D. Dissertation, Rice University, Houston, 104 p.Google Scholar
Ahr, W. M. 1971. Paleoenvironment, algal structures and fossil algae in the Upper Cambrian of Central Texas. Journal of Sedimentary Petrology, 41:205216.Google Scholar
Barnes, V. E., and Bell, W. C. 1977. The Moore Hollow Group of central Texas. Bureau of Economic Geology, Report of Investigations 88, University of Texas, Austin, 169 p.Google Scholar
Bell, W. C., and Ellinwood, H. L. 1962. Upper Franconian and Lower Trempealeauan Cambrian trilobites and brachiopods, Wilberns Formation, Central Texas. Journal of Paleontology, 36:385423.Google Scholar
Beresi, M. S. 1993. Dispersión geográfica y estratigráfica du Nuia (microorganisme algal) en la Precordillera de San Juan. Memoire III Congresse Latinamericano de Paleontología, 7379.Google Scholar
Chow, N., and James, N. P. 1987. Facies-specific, calcitic and bimineralic ooids from the Middle and Upper Cambrian platform carbonates. Western Newfoundland, Canada. Journal of Sedimentary Petrology, 57:907921.Google Scholar
Coniglio, M., and James, N. P. 1985. Calcified algae as sediment contributors to early Paleozoic limestones: evidence from deep-water sediments of the Cow Head Group, western Newfoundland. Journal of Sedimentary Petrology, 55:746754.Google Scholar
Danielli, H. M. C. 1981. The fossil alga Girvanella Nicholson and Etheridge. Bulletin British Museum of Natural History (Geology), 35:79105.Google Scholar
Golonka, J., Ross, M. I., and Scotese, C. R. 1994. Phanerozoic paleogeographic and paleoclimatic modelling maps, p. 124. In Embry, A. F., Beauchamp, B. and Glass, D. J., (eds.), Pangea: Global environments and resources. Memoir Canadian Society of Petroleum Geologists, 17.Google Scholar
Gnoli, M., and Serpagli, E. 1970. The problematic micro-organism Nuia in the Lower Ordovician of precordilleran Argentina and its paleogeographic significance. Journal of Paleontology, 54:12451251.Google Scholar
Guilbault, J-P., Hubert, C., and Mamet, B. 1976. Nuia et Halysis, deux algues Ordovicienne énigmatiques des Basses-Terres du Saint-Laurent. Naturaliste Canadien, 103:119132.Google Scholar
Heller, P. L., Komar, P. D., and Pevear, D. R. 1980. Transport processes in ooid genesis. Journal of Sedimentary Petrology, 50:943952.Google Scholar
Howell, B. F., et al. 1944. Correlation of the Cambrian formations of North America. Geological Society of America Bulletin, 55:9931003.CrossRefGoogle Scholar
Ince, D. 1984. Sedimentation and tectonism in the Middle Ordovician of the Girvan district, SW Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences, 75:225237.CrossRefGoogle Scholar
Johnson, J. H. 1966a. A review of the Cambrian Algae. Colorado School of Mines Quarterly, 61:1162.Google Scholar
Johnson, J. H. 1966b. The late Cambrian algal genus Nuia from Brewster County, Texas. Journal of Paleontology, 40:433435.Google Scholar
Korde, K.B. 1954. Cambrian algae from the vicinity of the village Boguchany on the Angara River. In Shatskiy, N. S. (ed.), Voprosy geologii Azii. Moskva, Akademii Nauk SSSR, 1:531553. [in Russian]Google Scholar
Land, L. S., Mackenzie, F. T., and Gould, S. J. 1967. Pleistocene history of Bermuda. Geological Society of America Bulletin, 78:9931006.CrossRefGoogle Scholar
Longacre, S. A. 1970. Trilobites of the Upper Cambrian Ptychaspid biomere, Wilberns Formation, Central Texas. Paleontological Society Memoir 4, (Journal of Paleontology, 44[1] supplement), 68 p.CrossRefGoogle Scholar
Mamet, B., and Roux, A. 1982. Sur le mode de croissance de Nuia, algue incertae sedis. Geobios, 15:959965.CrossRefGoogle Scholar
Mamet, B., Roux, A., and Shalaby, H. 1984. Rǒle des algues calcaire dans la sédimentation Ordovicienne de la plate-forme du Saint-Laurent. Geobios Mémoire Spécial, 8:261269.CrossRefGoogle Scholar
Marshall, H. D. 1959. Geology of the Schep Creek area, Mason County, Texas. Unpublished , , 163 p.Google Scholar
Maslov, V. P. 1954. On the Lower Silurian of eastern Siberia. In Shatskiy, N. S. (ed.), Voprosy geologii Azii. Moskva, Akademii Nauk SSSR, 1:495529. [in Russian]Google Scholar
Maslov, V. P. 1956. Fossil algae of the USSR. Trudy Instituta Geologicheskikh Nauk, Akademii Nauk SSSR, 160, 301 p. [in Russian]Google Scholar
Maslov, V. P. 1963. Introduction to the study of fossil Charophyta. Proc. G.I.N., Akademii Nauk SSSR, 82, 104 p. [in Russian]Google Scholar
Palmer, A. R., and Halley, R. B. 1979. Physical stratigraphy and trilobite biostratigraphy of the Carrera Formation (Lower and Middle Cambrian in the southern Great Basin. U.S. Geological Survey Professional Paper, 1047, 131 p.Google Scholar
Paul, C. R. C. 1976. Palaeogeography of primative echinoderms in the Ordovician, p. 2144. In Bassett, M. G. (ed.), The Ordovician System. Proceedings of a Palaeontology Association Symposium, Birmingham.Google Scholar
Pentecost, A. 1991. Calcification processes in algae and cyanobacteria, p. 320. In Riding, R. (ed.), Calcareous Algae and Stromatolites. New York, Springer-Verlag.CrossRefGoogle Scholar
Reitlinger, E. A. 1959. Atlas of microscopic organic remains and problematica in the ancient deposits of Siberia. Trudy Institut Geologii Nauk, Akademii Nauk SSSR, 25, 62p. [in Russian]Google Scholar
Riding, R. 1991. Calcified cyanobacteria, p. 5587. In Riding, R. (ed.), Calcareous Algae and Stromatolites. New York, Springer-Verlag.CrossRefGoogle Scholar
Riding, R. 1992. Temporal variation in calcification of marine cyanobacteria. Quarterly Journal of the Geological Society, London, 149:979989.CrossRefGoogle Scholar
Ross, R. J., Valusek, J. E., and James, N. P. 1988. Nuia and its environmental significance, p. 115121. In Wolberg, D. L. (ed.), Contributions to Paleozoic Paleontology and Stratigraphy in Honor of Rousseau H. Flower. New Mexico Bureau of Mines and Mineral Resources Memoir, 44.Google Scholar
Schiffelbein, P. A. 1983. Paleoecology of problematicum Nuia and relationship to the carbonate mudmound at Meilejohn Peak, Nevada. Geological Society of America Abstracts with Programs, 15(3):410.Google Scholar
Stephenson, J. P., Walker, K. R., and McLaughlin, R. E. 1973. The Lenoir Formation back reef supratidal, intertidal and subtidal shelf lagoon facies. Bulletin Tennessee Division of Geology, 70:122126.Google Scholar
Stricker, G. D., and Carozzi, A. V. 1973. Carbonate microfacies of the Pogonip Group (Lower Ordovician), Arrow Canyon Range, Clark County, Nevada, USA. Bulletin du Centre de Recherches Pau, 7:499541.Google Scholar
Swett, K. 1964. Petrology and paragenesis of the Ordovician Manitou Formation along the Front Range of Colorado. Journal of Sedimentary Petrology, 34:615624.Google Scholar
Taylor, M. E., and Cook, H. E. 1976. Continental shelf and slope facies in the Upper Cambrian and lowest Ordovician of Nevada, Brigham Young Geology Studies. 32:181214.Google Scholar
Toomey, D. F. 1967. Additional occurences and extension of stratigraphic range of the problematic organism Nuia. Journal of Paleontology, 41:14571460.Google Scholar
Toomey, D. F. 1981. Organic-buildup constructional capabilities in Lower Ordivician and Late Paleozoic mounds, p. 3568. In Gray, J., Boucot, A. J., and Berry, W. B. N. (eds.), Communities of the Past. Stroudsberg, Hutchison-Ross.Google Scholar
Toomey, D. F., and Klement, K. W. 1966. A problematic micro-organism from the El Paso Group (Lower Ordovician) of West Texas. Journal of Paleontology, 40:13041311.Google Scholar
Vachard, D., and Tellez-Giron, C. 1986. El alga Nuia en el Ordovicico de Mexico: hipotesis diversas. Revista Instituta Mexicano del Petroleo, 18:1225.Google Scholar
Whittington, H. B., and Hughes, C. P. 1973. Ordovician trilobite distribution and geography. Special Papers in Palaeontology, 12:235240.Google Scholar
Wilkinson, B. H., Owen, R. M., and Carroll, A. R. 1985. Submarine hydrothermal weathering, global eustacy, and the carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Petrology, 55:171183.Google Scholar
Williams, A. 1973. Distribution of brachiopod assemblages in relation to Ordovician palaeogeography. Special Papers in Palaeontology, 12:241269.Google Scholar
Wray, J. L. 1977. Calcareous Algae. Developments in Palaeontology and Stratigraphy 4, Elsevier, Amsterdam, 181 p.Google Scholar