Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T12:11:47.074Z Has data issue: false hasContentIssue false

Osteology and neuroanatomy of a phasianid (Aves: Galliformes) from the Miocene of Nebraska

Published online by Cambridge University Press:  19 October 2022

Daniel T. Ksepka*
Affiliation:
Bruce Museum, Greenwich, Connecticut 06830, USA ,
Catherine M. Early
Affiliation:
Biology Department, Science Museum of Minnesota, Saint Paul, Minnesota 55102, USA
Kate Dzikiewicz
Affiliation:
Bruce Museum, Greenwich, Connecticut 06830, USA ,
Amy M. Balanoff
Affiliation:
Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
*
*Corresponding author.

Abstract

Tetraoninae (grouse) and Meleagridinae (turkeys) are conspicuous representatives of the modern North American avifauna. The pre-Pleistocene fossil record of these clades has historically been limited to fragmentary remains, in some cases contributing to confusion rather than improving our understanding of how these charismatic landfowl evolved. We report an exquisitely preserved partial skeleton representing a new species of Late Miocene phasianid from the Ash Hollow Formation of Nebraska. Centuriavis lioae n. gen. n. sp. is a phasianid species close in size to modern sage-grouse that diverged prior to the grouse-turkey split, and thus offers insight into the early history of this radiation. The cranial endocast resembles other North American phasianids and differs from odontophorids in exhibiting a strongly projected Wulst bordered by a well-defined vallecula. Phylogenetic analyses indicate that Centuriavis lioae forms a clade with Tetraoninae, Meleagridinae, and Pucrasia macrolopha (Koklass pheasant). The new fossil species provides a Late Miocene minimum calibration for the divergence of these extant taxa from other Galliformes and supports the hypothesis of a single dispersal from Asia to North America by a lineage that later gave rise to grouse and turkeys.

UUID: https://zoobank.org/34ecda2f-f2f2-4c92-a82f-292e23cf2da1

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audubon, J.J., 1839, A Synopsis of the Birds of North America: Edinburgh, Adam and Charles Black, 142 p.CrossRefGoogle Scholar
Balanoff, A.M., Bever, G.S., Colbert, M.W., Clarke, J.A., Field, D.J., Gignac, P.M., Ksepka, D.T., Ridgely, R.C., Smith, N.A., Torres, C.R., Walsh, S., and Witmer, L.M., 2016, Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives: Journal of Anatomy, v. 229, p. 173190.CrossRefGoogle ScholarPubMed
Bang, B., and Cobb, S., 1968, The size of the olfactory bulb in l08 species of birds: The Auk, v. 85, p. 5561.Google Scholar
Baumel, J.J., and Witmer, L.M., 1993, Osteologia, in Baumel, J.J., King, A.S., Breazile, J.E., Evans, H.E., and Vanden Berge, J.C., eds., Handbook of Avian Anatomy: Nomina Anatomica Avium: Cambridge, Massachusetts, Nuttall Ornithology Club, p. 45132.Google Scholar
Bocheński, Z.M., and Campbell, K.E., 2006, The extinct California turkey, Meleagris californica, from Rancho La Brea: comparative osteology and systematics: Contributions in Science of the Natural History Museum of Los Angeles County, v. 509, p. 192.Google Scholar
Boev, Z.N., 2002, Tetraonidae Vigors, 1825 (Galliformes—Aves) in the Neogene–Quaternary record of Bulgaria and the origin and evolution of the family: Acta Zoologica Cracoviensia, v. 45, p. 263282.Google Scholar
Bonaparte, C.L., 1837, Notice of a nondescript species of grouse, from North America: The Zoological Journal, v. 3, p. 213.Google Scholar
Brodkorb, P., 1964, Catalog of fossil birds. Part 2 (Anseriformes through Galliformes): Bulletin of the Florida State Museum Biological Sciences, v. 8, p. 195335.Google Scholar
Cassin, J., 1857, Catalogue of birds collected at Cape Lopez, Western Africa by Mr. P.B. Duchaillu in1856, with notes and descriptions of new species: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 8, p. 316322.Google Scholar
Clarke, J.A., 2004, Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae): Bulletin of the American Museum of Natural History, no. 286, p. 1179.2.0.CO;2>CrossRefGoogle Scholar
Crowe, T.M., and Short, L.L., 1992, A new gallinaceous bird from the Oligocene of Nebraska, with comments on the phylogenetic position of Gallinuloididae: Natural History Museum of Los Angeles County, Science Series, v. 36, p. 179185.Google Scholar
Crowe, T.M., Bowie, R.C.K., Bloomer, P., Mandiwana, T.G., Hedderson, T.A.J., Randi, E., Pereira, S. L., and Wakeling, J., 2006, Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data: Cladistics, v. 22, p. 495532.CrossRefGoogle ScholarPubMed
Cuvier, G., 1820, Descrition d'une nouvelle espéce de dindon de la baie de Honduras: Mémoires du Muséum d'Histoire Naturelle, v. 6, p. 14.Google Scholar
de Juana, E., 1994, Family Tetraonidae (grouse), in del Hoyo, J., Elliot, A., and Sargatal, J., eds., Handbook of the Birds of the World Volume 2: New World Vultures to Guineafowl: Barcelona, Lynx Edicions, p. 376411.Google Scholar
del Hoyo, J., Elliot, A., and Sargatal, J., 1994, Handbook of the Birds of the World Volume 2: New World Vultures to Guineafowl: Barcelona, Lynx Edicions, 638 p.Google Scholar
Dimcheff, D.E., Drovetski, S.V., and Mindell, D.P., 2002, Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes: Molecular Phylogenetics and Evolution, v. 24, p. 203215.CrossRefGoogle ScholarPubMed
Drovetski, S.V., 2003, Plio-Pleistocene climatic oscilations, Holarctic biogeography and speciation in an avian subfamily: Journal of Biogeography, v. 30, p. 11731181.CrossRefGoogle Scholar
Dunning, J.B. Jr., 2008, CRC Handbook of Avian Body Masses, 2nd Edition: Boca Raton, Florida, CRC Press, 666 p.Google Scholar
Dyke, G.J., Gulas, B.E., and Crowe, T.M., 2003, Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters: Zoological Journal of the Linnean Society, v. 137, p. 227244.CrossRefGoogle Scholar
Early, C.M., Iwaniuk, A.N., Ridgely, R.C., and Witmer, L.M., 2020a, Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds: Journal of Anatomy, v. 237, p. 11621176.CrossRefGoogle ScholarPubMed
Early, C.M., Ridgely, R.C., and Witmer, L.M., 2020b, Beyond endocasts: using predicted brain-structure volumes of extinct birds to assess neuroanatomical and behavioral inferences: Diversity, v. 12, 34. https://doi.org/10.3390/d12010034.CrossRefGoogle Scholar
Eastman, C.R., 1900, New fossil bird and fish remains from the Middle Eocene of Wyoming: Geological Magazine, v. 7, p. 5458.CrossRefGoogle Scholar
Elzanowski, A., Paul, G.S., and Stidham, T.A., 2000, An avian quadrate from the Late Cretaceous Lance Formation of Wyoming: Journal of Vertebrate Paleontology, v. 20, p. 712719.CrossRefGoogle Scholar
Emslie, S.D., 1998, Avian community, climate, and sea-level changes in the Plio-Pleistocene of the Florida Peninsula: Ornithological Monographs, v. 50, p. 1113.CrossRefGoogle Scholar
Field, D.J., Lynner, C., Brown, C., and Darroch, S.A.F., 2013, Skeletal correlates for body mass estimation in modern and fossil flying birds: PLoS ONE, v. 8, e82000. https://doi.org/10.1371/journal.pone.0082000.CrossRefGoogle ScholarPubMed
Fremd, T.J., 2010, Guidebook: SVP Field Symposium 2010: John Day Basin Field Conference, John Day Fossil Beds National Monument (and surrounding basin) Oregon, USA; June 7–11, 2010, 153 p. http://hdl.handle.net/1794/12193.Google Scholar
Gill, F., Donsker, D., and Rasmussen, P., eds., 2021, IOC World Bird List (v12.2): https://doi.org/10.14344/IOC.ML.12.1.CrossRefGoogle Scholar
Gray, J.E., 1830, Illustrations of Indian Zoology, chiefly selected from the collection of Major-General Hardwicke, F.R.S.: London, Treuttel, Wutrz, Treuttel, Jun. and Richter, 100 pl.CrossRefGoogle Scholar
Horsfield, T., 1821, XIV. Systematic arrangement and description of birds from the Island of Java: Transactions of the Linnean Society of London, v. 1, p. 133200.CrossRefGoogle Scholar
Hosner, P.A., Tobias, J.A., Braun, E.L., and Kimball, R.T., 2017, How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal evolution in the landfowl (Aves: Galliformes): Proceedings of the Royal Society B: Biological Sciences, v. 284, 20170210. https://doi.org/10.1098/rspb.2017.0210.Google Scholar
Howard, H., 1963, Fossil birds from the Anza-Borrego Desert: Los Angeles County Museum of Natural History, Contributions in Science, v. 73, p. 133.Google Scholar
Howard, H., 1966, Two fossil birds from the Lower Miocene of South Dakota: Contributions in Science of the Natural History Museum of Los Angeles County, v. 107, p. 18.Google Scholar
Hudson, G.E., Wang, S.Y.C., and Provost, E.E., 1965, Ontogeny of the supernumerary sesamoids in the leg muscles of the ring-necked pheasant: The Auk, v. 82, p. 427437.CrossRefGoogle Scholar
Iwaniuk, A., and Nelson, J., 2002, Can endocranial volume be used as an estimate of brain size in birds?: Canadian Journal of Zoology, v. 80, p. 1623.CrossRefGoogle Scholar
Jánossy, D., 1974, Die mittelpleistozäne Vogelfauna von Hundsheim (Niederösterreich): Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathematisch-Naturwissenschftliche Klasse, Abteilung I, v. 182, p. 211257.Google Scholar
Jehl, J.R., 1969, Fossil grouse of the genus Dendragapus: Transactions of the San Diego Society of Natural History, v. 15, 165174.Google Scholar
Johnsgard, P.A., 1986, The Pheasants of the World: Oxford, Oxford University Press, 300 p.Google Scholar
Kaiser, V.B., van Tuinen, M., and Ellegren, H., 2007, Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in galliform birds: Molecular Biology and Evolution, v. 24, p. 338347.CrossRefGoogle ScholarPubMed
Kan, X., Yang, J., Li, X., Chen, L., Lei, Z., Wang, M., Qian, C., Gao, H., and Yang, Z., 2010, Phylogeny of major lineages of galliform birds (Aves: Galliformes) based on complete mitochondrial genomes: Genetics and Molecular Research, v. 9, p. 16251633.CrossRefGoogle ScholarPubMed
Kimball, R.T., and Braun, E.L., 2008, A multigene phylogeny of Galliformes supports a single origin of erectile ability in non-feathered facial traits: Journal of Avian Biology, v. 39, p. 438445.Google Scholar
Kimball, R., Braun, E., Zwartjes, P., Crowe, T., and Ligon, J., 1999, A molecular phylogeny of the pheasants and partridges suggests that these lineages are not monophyletic: Molecular Phylogenetics and Evolution, v. 11, p. 3854.CrossRefGoogle Scholar
Kimball, R.T., Mary, C.M.S., and Braun, E.L., 2011, A macroevolutionary perspective on multiple sexual traits in the Phasianidae (Galliformes): International Journal of Evolutionary Biology, v. 2011, 423938. https://doi.org/10.4061/2011/423938.CrossRefGoogle ScholarPubMed
Kriegs, J. O., Matzke, A., Churakov, G., Kuritzin, A., Mayr, G., Brosius, J., and Schmitz, J., 2007, Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes): BMC Evolutionary Biology, v. 7, 190. https://doi.org/10.1186/1471-2148-7-190.CrossRefGoogle ScholarPubMed
Ksepka, D.T., 2009, Broken gears in the avian molecular clock: new phylogenetic analyses support stem galliform status for Gallinuloides wyomingensis and rallid affinities for Amitabha urbsinterdictensis: Cladistics, v. 25, p. 173197.CrossRefGoogle ScholarPubMed
Lambrecht, K., 1933, Handbuch der Palaeornithologie: Berlin, Gebrüder Borntraeger, 1024 p.Google Scholar
Lander, E.B., 2008, Early Clarendonian (late Middle Miocene) fossil land mammal assemblages from the Lake Mathews Formation, Riverside County, southern California, and a preliminary review of Merychyus (Mammalia, Artiodactyla, Oreodontidae), in Wang, X., and Barnes, L.G., eds., Geology and Vertebrate Paleontology of Western and Southern North America: Contributions in Honor of David P. Whistler: Natural History Museum of Los Angeles County, Science Series, v. 41, p. 181212.Google Scholar
Lesson, R.P., 1829, Histoire Naturelle des Oiseaux-Mouches: Paris, Bertrand, 223 p.Google Scholar
Li, Z., Clarke, J.A., Eliason, C.M., Stidham, T.A., Deng, T., and Zhou, Z., 2018, Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China: Scientific Reports, v. 8, 8099. https://doi.org/10.1038/s41598-018-26178-x.Google Scholar
Linnaeus, C., 1758, Systema Naturæ per Regna Tria Naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata: Holmiæ, Salvii, v. 1, 824 p.Google Scholar
Linnaeus, C., 1766, Systema Naturæ per Regna Tria Naturæ, Editio duodecima, Regnum Animale: Stochholm, Salvius, 1328 p.Google Scholar
Marco, A.S., 2009, New Iberian galliforms and reappraisal of some Pliocene and Pleistocene Eurasian taxa: Journal of Vertebrate Paleontology, v. 29, p. 11481161.CrossRefGoogle Scholar
Marsh, O.C., 1877, New fossil vertebrates: American Journal of Science, v. 14, p. 249256.CrossRefGoogle Scholar
Martin, L.D., and Tate, J., 1970, A new turkey from the Pliocene of Nebraska: The Wilson Bulletin, v. 82, p. 214218.Google Scholar
Mayr, G., 2000, A new basal galliform bird from the Middle Eocene of Messel (Hessen, Germany): Senckenbergiana Lethaea, v. 80, p. 4557.CrossRefGoogle Scholar
Mayr, G., 2009, Paleogene Fossil Birds: Heidelberg, Springer, 262 p.CrossRefGoogle Scholar
Mayr, G., 2014, Comparative morphology of the radial carpal bone of neornithine birds and the phylogenetic significance of character variation: Zoomorphology, v. 133, p. 425434.CrossRefGoogle Scholar
Mayr, G., 2016a, Avian Evolution: The Fossil Record of Birds and Its Paleobiological Significance: Chichester, West Sussex, UK, Wiley-Blackwell, 320 p.CrossRefGoogle Scholar
Mayr, G., 2016b, Variations in the hypotarsus morphology of birds and their evolutionary significance: Acta Zoologica, v. 97, p. 196210.CrossRefGoogle Scholar
Mayr, G., and Weidig, I., 2004, The early Eocene bird Gallinuloides wyomingensis—a stem group representative of Galliformes: Acta Palaeontologica Polonica, v. 49, p. 211217.Google Scholar
Mayr, G., Poschmann, M., and Wuttke, M., 2006, A nearly complete skeleton of the fossil galliform bird Palaeortyx from the late Oligocene of Germany: Acta Ornithologica, v. 41, p. 129135.Google Scholar
Mayr, G., Goedert, J.L., and Rabenstein, R., 2022, Cranium of an Eocene/Oligocene pheasant-sized galliform bird from western North America, with the description of a vascular autapomorphy of the Galliformes: Journal of Ornithology, v. 163, p. 315326.CrossRefGoogle Scholar
Miller, A.H., 1944, An avifauna from the Lower Miocene of South Dakota: University of California Publications Bulletin of the Department of Geological Sciences, v. 27, p. 85100.Google Scholar
Miller, A.H., and Bowman, R.I., 1956, Fossil birds from the Late Pliocene of Cita Canyon, Texas: The Wilson Bulletin, v. 68, p. 3846.Google Scholar
Miller, L.H., 1909, Pavo californicus, a fossil peacock from the Quaternary asphalt beds of Rancho La Brea: University of California Publications Bulletin of the Department of Geology, v. 5, p. 285289.Google Scholar
Miller, L., 1940, A new Pleistocene turkey from Mexico: Condor, v. 42, p. 154156.CrossRefGoogle Scholar
Milne-Edwards, A., 1867–1871, Recherches Anatomiques et Paléontologiques pour servir à l'histoire des oiseaux fossiles de la France: Paris, Masson, 627 p.Google Scholar
Montin, L., 1776, Tvänne Arter af Snöripan: Physio graphiska Sdlskapets Handlingar, v. 1, p. 150155.Google Scholar
Mourer-Chauviré, C., 1992, Les Galliformes (Aves) of phosphorites du Quercy (France) systematics and biostratigraphy, in Campbell, K.E., ed., Papers in Avian Paleontology honoring Pierce Brodkorb: Natural History Museum of Los Angeles County, Science Series, v. 36, p. 3795.Google Scholar
Olson, S.L., 1985, The fossil record of birds, in Farner, D.S., King, J.R., and Parkes, K.C., eds., Avian Biology, Volume 8: New York, Academic Press, p. 79238.CrossRefGoogle Scholar
Olson, S.L., and Farrand, J. Jr., 1974, Rhegminornis restudied: a tiny Miocene turkey: The Wilson Bulletin, v. 86, p. 114120.Google Scholar
Persons, N.W., Hosner, P.A., Meiklejohn, K.A., Braun, E.L., and Kimball, R.T., 2016, Sorting out relationships among the grouse and ptarmigan using intron, mitochondrial, and ultra-conserved element sequences: Molecular Phylogenetics and Evolution, v. 98, p. 123132.CrossRefGoogle ScholarPubMed
Porter, W.F., 1994, Family Meleagrididae (turkeys), in del Hoyo, J., Elliot, A., and Sargatal, J., eds., Handbook of the Birds of the World Volume 2: New World Vultures to Guineafowl: Barcelona, Lynx Edicions, p. 364375.Google Scholar
Rothschild, R.W., 1903, Report of the club meeting no. XCV: Bulletin of the British Ornithologists' Club, v. 13, p. 4152.Google Scholar
Shufeldt, R.W., 1892, A study of the fossil avifauna of the Equus beds of the Oregon desert: Journal of the Academy of Natural Sciences of Philadelphia, v. 9, ser. 2, p. 389426.Google Scholar
Shufeldt, R.W., 1915, Fossil birds in the Marsh Collections of Yale University: Transactions of the Connecticut Academy of Arts and Sciences, v. 19, p. 1110.Google Scholar
Sibley, C.G., and Ahlquist, J. E., 1990, Phylogeny and Classification of Birds: A Study in Molecular Evolution: New Haven, Yale University Press, 976 p.Google Scholar
Steadman, D.W., 1980, A review of the osteology and paleontology of turkeys (Aves: Meleagridinae): Contributions in Science, Natural History Museum of Los Angeles County, v. 330, p. 131207.Google Scholar
Stidham, T.A., 2011, The carpometacarpus of the Pliocene turkey Meleagris leopoldi (Galliformes: Phasianidae) and the problem of morphological variability in turkeys: PaleoBios, v. 30, p. 1317.CrossRefGoogle Scholar
Stidham, T.A., Townsend, K., and Holroyd, P.A., 2020, Evidence for wide dispersal in a stem galliform clade from a new small-sized middle Eocene Pangalliform (Aves: Paraortygidae) from the Uinta Basin of Utah (USA): Diversity, v. 12, 90. https://doi.org/10.3390/d12030090.CrossRefGoogle Scholar
Stone, W.S., 1915, Shufeldt on fossil birds in the Marsh Collection: The Auk, v. 32, p. 375376.Google Scholar
Swisher, C.C. III, 1992, Ar/Ar Dating and its Application to the Calibration of the North American Land Mammal Ages [Ph.D. dissertation]: Berkeley, California, University of California, 239 p.Google Scholar
Swofford, D.L., 2003, PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods): Sunderland, UK, Sinauer Associates.Google Scholar
Tedford, R.H., Albright, L.B. III, Barnosky, A.D., Ferrusquia-Villafranca, I., Hunt, R.M. Jr., Storer, J.E., Swisher, C.C. III, Voorhies, M.R., Webb, S.D., and Whistler, D.P., 2004, Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through Early Pliocene epochs), in Woodburne, M.O., ed., Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology: New York, Columbia University Press, p. 169231.CrossRefGoogle Scholar
Temminck, C.-J., 1820, Manuel d'Ornithologie, ou Tableau Systématique des Oiseaux qui se Trouvent en Europe: precédé d'une analyse du système général d'ornithologie, et suivi d'une table alphabétique des espèces: Paris, Cosson, 439 p.Google Scholar
Tordoff, H.B., 1951, A quail from the Oligocene of Colorado: The Condor, v. 53, p. 203204.Google Scholar
Tordoff, H.B., and Macdonald, J., 1957, A new bird (family Cracidae) from the early Oligocene of South Dakota: The Auk, v. 74, p. 174184.CrossRefGoogle Scholar
Tyrberg, T., 1998, Pleistocene Birds of the Palearctic: A Catalogue: Cambridge, Massachusetts, Publications of the Nuttall Ornithological Club no. 27, 720 p.Google Scholar
Wagler, J.G., 1830, Natürliches System der Amphibien: mit vorangehender Classification der Säugethiere und Vögel: ein Beitrag zur vergleichenden Zoologie: München, Stuttgart, Tübingen, In der J.G. Cotta'scchen Buchhandlung, 354 p.Google Scholar
Wang, N., Kimball, R.T., Braun, E.L., Liang, B., and Zhang, Z., 2013, Assessing phylogenetic relationships among Galliformes: a multigene phylogeny with expanded taxon sampling in Phasianidae: PloS ONE, v. 8, e64312. https://doi.org/10.1371/journal.pone.0064312.Google ScholarPubMed
Wang, N., Kimball, R.T., Braun, E.L., Liang, B., and Zhang, Z., 2017, Ancestral range reconstruction of Galliformes: the effects of topology and taxon sampling: Journal of Biogeography, v. 44, p. 122135.Google Scholar
Watanabe, A., Gignac, P.M., Balanoff, A.M., Green, T.L., Kley, N.J., and Norell, M.A., 2019, Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?: Journal of Anatomy, v. 234, p. 291305.CrossRefGoogle ScholarPubMed
Weigel, R.D., 1963, Oligocene birds from Saskatchewan: Quarterly Journal of the Florida Academy of Sciences, v. 26, p. 257262.Google Scholar
Wetmore, A., 1930, Two fossil birds from the Miocene of Nebraska: Condor, v. 32, p. 152154.CrossRefGoogle Scholar
Wetmore, A., 1943, Fossil birds from the Tertiary deposits of Florida: Proceedings of the New England Zoological Club, v. 22, p. 5968.Google Scholar
Wetmore, A., 1956, A fossil guan from the Oligocene of South Dakota: The Condor, v. 58, p. 234235.Google Scholar
Zelenkov, N.V., and Panteleyev, A.V., 2019, A small stem-galliform bird (Aves: Paraortygidae) from the Eocene of Uzbekistan: Comptes Rendus Palevol, v. 18, p. 517523.CrossRefGoogle Scholar
Zusi, R.L., and Livezey, B.C., 2000, Homology and phylogenetic implications of some enigmatic cranial features in galliform and anseriform birds: Annals of Carnegie Museum, v. 69, p. 157193.CrossRefGoogle Scholar