Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:17:10.313Z Has data issue: false hasContentIssue false

The “seeds” on Padgettia readi are insect galls: reassignment of the plant to Odontopteris, the gall to Ovofoligallites n. gen., and the evolutionary implications thereof

Published online by Cambridge University Press:  20 May 2016

Gregory W. Stull
Affiliation:
Department of Biology and Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA,
Conrad C. Labandeira
Affiliation:
Department of Paleobiology, NMNH Smithsonian Institution, Washington, DC 20560 USA Department of Entomology and BEES Program, University of Maryland, College Park, 20742, USA
William A. Dimichele
Affiliation:
Department of Paleobiology, NMNH Smithsonian Institution, Washington, DC 20560 USA
Dan S. Chaney
Affiliation:
Department of Paleobiology, NMNH Smithsonian Institution, Washington, DC 20560 USA

Abstract

The Early Permian (Asselian) Euramerican plant Padgettia readi Mamay is reassigned to Odontopteris Brongniart, as O. readi (Mamay) Stull et al. n. comb. Distinctive elongate structures on neuropteroid pinnules of this plant, previously interpreted as fructifications, are herein reinterpreted as foliar histoid galls, structurally analogous to blister or vein galls, and probably induced by an early lineage of hemipterans or mites. These distinctive features are assigned to the new gall ichnogenus Ovofoligallites Labandeira, n. ichnogen. n. ichnosp, as O. padgetti Labandeira. The Early Permian association between an Odontopteris host and Ovofoligallites gallers probably originated during the Middle Pennsylvanian as a similar, antecedent association between Macroneuropteris scheuchzeri (Hoffmann) Cleal, Shute, and Zodrow and the maker of U-shaped surface features long known as a distinctive, unattributed damage type, but now recognizable as a likely gall. The persistence of this association between the galler and certain medullosan pteridosperms into the Permian adds to the morphological richness of the Permian galler insect fauna. The Permian ecological expansion of galling insects resulted in colonization of new host plants, primarily through a shift from the consumption of entire, mostly pteridophyte axial organs during the Pennsylvanian to the partitioning of seed plant tissues in leaves and small branches in the Permian. The Ovofoligallites galler was part of a diverse Permian galler guild involving a variety of plant taxa, organs and tissues that overwhelmingly targeted multiple lineages of seed plants.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, S. and Moran, N. A. 1994. Pemphigus obesinymphae, a new American aphid species with defenders and swollen nymphs (Homoptera: Aphidoidea: Pemphigidae). Journal of the New York Entomological Society, 102:251260.Google Scholar
Ash, S. 1997. Evidence of arthropod–plant interactions in the Upper Triassic of the southwestern United States. Lethaia, 29:237248.Google Scholar
Barthel, M. and Amelang, A. 2011. Der Farnsamer Odontopteris schlotheimii Brongniart aus der Manebach-Formation des Thüringer Wald-Beckens. Semana, 26:1324.Google Scholar
Baxter, R. W. 1978. Sphenopteris sellardsi, a problematical pteridosperm from the Permian of Texas. University of Kansas Paleontological Contributions, 94:17.Google Scholar
Banerjee, J. 2004. Evidence of insect–plant interactions from the Upper Gondwana Sequence (Lower Cretaceous) in the Rajmahal Basin, India. Gondwana Research, 7:205210.CrossRefGoogle Scholar
Banerjee, M. and Bera, S. 1998. Record of zoocecidia on leaves of Glossopteris browniana Brong from Mohuda Basin, Upper Permian, Indian Lower Gondwana. Indian Biologist, 30:5861.Google Scholar
Beck, A. L. and Labandeira, C. C. 1998. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 142:139173.Google Scholar
Berry, E. W. 1923. Pathological conditions among fossil plants, p. 99114. InMoodie, R. L.(ed.), Paleopathology: An Introduction to the Study of the Ancient Evidences of Disease. University of Illinois Press, Urbana.Google Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M., and Uchman, A. 2006. Names for trace fossils: A uniform approach. Lethaia, 39:265286.Google Scholar
Blagoderov, V. A. and Grimaldi, D. A. 2004. Fossil Sciaroidea in Cretaceous ambers, exclusive of Cecidomyiidae, Sciaridae, and Keroplatidae. American Museum Novitates, 3433:176.Google Scholar
Broutin, J., Doubinger, J., Farjanel, G., Freytet, P., Kerp, H., Langiaux, J., Lebreton, M.-L., Sebban, S., and Satta, S. 1990. Le renouvellement des flores au passage Carbonifère Permien: Approches stratigraphique, biologique, sédimentologique. Comptes Rendus de Academie des Sciences, Paris, 311:15631569.Google Scholar
Castro, M. P. 2005. La flora estefaniense B de La Magdalena (León, España), un referente europeo. Tomo II: Descripción sistemática de las Gimnospermas. Instituto Geológico Minero de España, Cuadernos del Museo Geominero, 4:1229.Google Scholar
Cleal, C. J., Shute, C. H., and Zodrow, E. L. 1990. A revised taxonomy for Paleozoic neuropterid foliage. Taxon, 39:486492.CrossRefGoogle Scholar
Cridland, A. A. and Morris, J. E. 1960. Spermopteris, a new genus of pteridosperms from the Upper Pennsylvanian series of Kansas. American Journal of Botany, 47:855859.Google Scholar
Darrah, W. C. 1969. A critical review of upper Pennsylvanian floras of eastern United States with notes on the Mazon Creek flora of Illinois. Privately published, 220p.Google Scholar
Diéguez, C., Nieves-Aldrey, J. L., and Barrón, E. 1996. Fossil galls (zoocecids) from the upper Miocene of La Cerdaña (Lérida, Spain). Review of Palaeobotany and Palynology, 94:329342.Google Scholar
Dimichele, W. A. and Aronson, R. B. 1992. The Pennsylvanian–Permian vegetational transition: a terrestrial analogue to the onshore–offshore hypothesis. Evolution, 46:807824.Google Scholar
Dimichele, W. A., Montañez, I. P., Poulsen, C. J., and Tabor, N. J. 2009. Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geobiology, 7:200226.Google Scholar
Dimichele, W. A., Cecil, C. B., Montañez, I. P., and Falcon-Lang, H. J. 2010. Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. International Journal of Coal Geology, 83:329344.Google Scholar
Doubinger, J., Vetter, P., Langiaux, J., Galtier, J., and Broutin, J. 1995. La flore fossile du bassin houiller de Saint-Étienne. Mémoires du Muséum National d'Histoire Naturelle, 164:1357.Google Scholar
Erwin, D. and Schick, K. N. 2007. New Miocene oak galls (Cynipini) and their bearing on the history of cynipid wasps in western North America. Journal of Paleontology, 81:561580.Google Scholar
Falcon-Lang, H. J. and Dimichele, W. A. 2010. What happened to the coal forests during Pennsylvanian glacial phases? Palaios, 25:611617.Google Scholar
Falcon-Lang, H. J., Nelson, J., Elrick, S., Looy, C., Ames, P., and Dimichele, W. A. 2010. Incised valley-fills containing conifers imply that seasonally-dry vegetation dominated Pennsylvanian tropic lowlands. Geology, 37:923926.CrossRefGoogle Scholar
Fernandes, G. W. and Price, P. W. 1988. Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia, 76:161167.CrossRefGoogle ScholarPubMed
Fielding, C. R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J. 2008. Stratigraphic record and facies associations of the late Paleozoic ice age in eastern Australia (New South Wales and Queensland), p. 4157. InFielding, C. R., Frank, T. D., and Isbell, J. L.(eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Paper 441.Google Scholar
Florin, R. 1945. Die Koniferen des Obercarbons und des unteren Perms. Palaeontographica, Abt. B (Paläophytologie), 85:162, pls. 1–30.Google Scholar
Florin, R. 1950. Upper Carboniferous and lower Permian conifers. Botanical Review, 16:258282.Google Scholar
Gagné, R. J. 1994. The Gall Midges of the Neotropical Region. Cornell University Press, Ithaca, New York.Google Scholar
Grauvogel-Stamm, L. 1978. La flore du Grès-a-Voltzia (Buntsandstein Supérieur) des Vosges du Nord (France). Morphologie, anatomie, interprétations phylogénique et paléogéographique. Sciences et Géologie, 50:1225.Google Scholar
Grauvogel-Stamm, L. and Kelber, K.-P. 1996. Plant-insect interactions and coevolution during the Triassic in western Europe. Paleontologia Lombarda (N.S.), 5:523.Google Scholar
Guleva, J. S. and Raman, A. 2007. Age of plant galls. Current Science 93:598.Google Scholar
Harris, T. M. 1942. Wonnacottia, a new bennettitalean microsporophyll. Annals of Botany, 4:577592.Google Scholar
Harris, T. M. 1969. The Yorkshire Jurassic Flora. III. Bennettitales. British Museum (Natural History), London.Google Scholar
Hentz, T. F. 1988. Lithostratigraphy and paleoenvironments of upper Paleozoic continental red beds, North-Central Texas: Bowie (new) and Wichita (revised) Groups: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 170, 55p.Google Scholar
Johnson, W. T. and Lyon, H. H. 1991. Insects that Feed on Trees and Shrubs, second edition. Cornell University Press, Ithaca, New York.Google Scholar
Krantz, G. W. and Lindquist, E. E. 1979. Evolution of phytophagous mites (Acari). Annual Review of Entomology, 24:121158.Google Scholar
Krassilov, V. 2008. Mine and gall predation as top down regulation in the plant–insect systems from the Cretaceous of Negev, Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 261:261269.Google Scholar
Krassilov, V. and Karasev, E. 2005. Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogrpahy, Palaeoclimatology, Palaeogeography, 284:326336.Google Scholar
Krassilov, V. and Karasev, E. 2008. First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin, European Russia. Alavesia, 2:247252.Google Scholar
Krassilov, V. and Rasnitsyn, A. 2008. Plant–Arthropod Interactions in the Early Angiosperm History: Evidence from the Cretaceous of Israel. Pensoft, Sofia.Google Scholar
Küster, E. 1911. Die Gallen der Pflanzen. Hirzel, Leipzig.Google Scholar
Labandeira, C. C. 1998. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26:329377.Google Scholar
Labandeira, C. C. 2002. The history of associations between plants and animals, p. 26–74, 248261. InHerrera, C. and Pellmyr, O., (eds.), Plant–Animal Interactions: An Evolutionary Approach. Blackwell Science, Oxford, U.K.Google Scholar
Labandeira, C. C. 2006a. The four phases of plant–arthropod associations in deep time. Geologica Acta, 4:409438.Google Scholar
Labandeira, C. C. 2006b. Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthropod Systematics and Phylogeny, 64:5394.Google Scholar
Labandeira, C. C. 2011. Evidence for an earliest Late Carboniferous divergence time and the early larval ecology and diversification of major Holometabola lineages. Entomologica Americana, 117:921.Google Scholar
Labandeira, C. C. and Allen, E. M. 2007. Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, U.S.A., and comparison to other late Paleozoic floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 247:197219.Google Scholar
Labandeira, C. C. and Beall, B. S. 1990. Arthropod terrestriality, p. 214256. InMikulic, D.(ed.), Arthropods: Notes for a Short Course. Short Courses in Paleontology, Vol. 3. Paleontological Society, Knoxville, Tennessee.Google Scholar
Labandeira, C. C. and Phillips, T. L. 1996. A Carboniferous petiole gall: insight into early ecologic history of the Holometabola. Proceedings of the National Academy of Sciences U.S.A., 93:84708474.Google Scholar
Labandeira, C. C. and Phillips, T. L. 2002. Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, U.S.A.: implications for the origin of the borer and galling functional-feeding-groups and holometabolous insects. Palaeontographica (A), 264:184, pls. 1–16.Google Scholar
Labandeira, C. C., Wilf, P., Johnson, K. R., and Marsh, F. 2007. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils (Version 3.0–Spring 2007). Smithsonian Institution, Washington, D.C., http://paleobiology.si.edu/pdfs/insectDamageGuide3.01.pdf.Google Scholar
Larew, H. 1992. Fossil galls, p. 5059. InShorthouse, J. D. and Rohfritsch, O.(eds.), Biology of Insect-Induced Galls. Oxford University Press, Oxford, U.K.Google Scholar
Laveine, J. P. and Behlis, A. 2007. Frond architecture of the seed-fern Macroneuropteris scheuchzeri, based on Pennsylvanian specimens from the Northern France coal field. Palaeontographica, Abt. B (Paläophytologie), 277:141.Google Scholar
Laveine, J. P. and Delbeque, S. 2011. The bifurcate “outer” semi-pinnate frond of the seed-fern Barthelopteris germarii, based on Late Pennsylvanian specimens from the Blanzy-Montceau Basin, Massif Central, France. Palaeontographica, Abt. B (Paläophytologie), 287:155.Google Scholar
Laveine, J. P. and Legrand, L. 2008. The degree of foliar-laminate segmentation of the Pennsylvanian seed-fern Macroneuropteris scheuchzeri. Revue de Paléobiologie, 27:475510.Google Scholar
Lesquereux, L. 1892. The flora of the Dakota Group. United States Geological Survey Monograph, 17:19400.Google Scholar
Mädler, A. K. 1936. Eine Blattgall an einem vorweltlichen Pappel-Blatt. Natur und Volk, 66:271274.Google Scholar
Maia, V. C. and Fernandes, G. W. 2004. Insect galls from Serra de São José (Tiradentes, MG, Brasil). Brazilian Journal of Biology, 64:423445.Google Scholar
Mamay, S. H. 1960. Padgettia, a new genus based on fertile neuropteroid foliage from the Permian of Texas. The Palaeobotanist, 9:5357.Google Scholar
Mapes, G. and Gastaldo, R. A. 1989. Upper Paleozoic non-peat accumulating floras, p. 115127. InBroadhead, T. W.(ed.), Fossil Land Plants: Notes for a Short Course. Studies in Geology, vol. 15. University of Tennessee, Nashville.Google Scholar
Meyer, J. 1987. Plant Galls and Gall Inducers. Gebrüder Borntraeger, Stuttgart.Google Scholar
Müller, A. H. 1982. Über Hyponome fossiler und rezenter Insekten, erster Beitrag. Freiberger Forschungshefte C, 366:727.Google Scholar
Nyman, T., Widmer, A., and Roininen, H. 2000. Evolution of gall morphology and host-plant relationships in willow-feeding sawflies. Evolution, 54:526533.Google Scholar
Pant, D. D. and Srivastava, P. C. 1995. Lower Gondwana insect remains and evidences of insect–plant interaction, p. 317326. InSurange, K. R., Bose, M. D., and Khare, P. K., (eds.), Proceedings of the International Conference on Global Environment and Diversification through Geological Time. Society of Indian Plant Taxonomists, Allahabad, India.Google Scholar
Pfefferkorn, H. 1980. A note on the term “upland flora.” Review of Palaeobotany and Palynology, 30:157158.Google Scholar
Plotnick, R. E., Kenig, F., Scott, A. C., Glasspool, I. J., Eble, C. F., and Lang, W. J. 2009. Pennsylvanian paleokarst and fills from northern Illinois, U.S.A.: a window into Late Carboniferous environments and landscapes. Palaios, 24:627637.CrossRefGoogle Scholar
Plumb, G. H. 1953. The formation and development of the Norway spruce gall caused by Aldeges abietis L. Connecticut Agricultural Experiment Station Bulletin, 566:177.Google Scholar
Potonié, H. 1893. Die Flora des Rothliegenden von Thüringen. Abhandlungen der Königlich Preussischen geologischen Landesansalt, N.F., 2:1298.Google Scholar
Prevec, R., Labandeira, C. C., Neveling, J., Gastaldo, R. A., Looy, C., and Bamford, M. A. 2009. A portrait of a Gondwanan ecosystem: a new Late Permian locality form KwaZulu–Natal, South Africa. Review of Palaeobotany and Palynology, 156:454493.Google Scholar
Rothwell, G., Grauvogel-Stamm, L., and Mapes, G. 2000. An herbaceous fossil conifer: gymnospermous ruderals in the evolution of Mesozoic vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 156:139145.Google Scholar
Russo, R. A. 2006. Field Guide to Plant Galls of California and other Western States. University of California Press, Berkeley and Los Angeles.Google Scholar
Sellards, E. H. 1908. Fossil plants of the Upper Paleozoic of Kansas. University Geological Survey of Kansas, 9:386499.Google Scholar
Scott, A. C., Stephenson, J., and Collinson, M. E. 1994. The fossil record of leaves with galls, p. 447470. InWilliams, M. A. J.(ed.), Plant Galls. Systematics Association Special Volume, no. 49. Oxford University Press, Oxford, U.K.Google Scholar
Shcherbakov, D. E. 2000. Permian faunas of Homoptera (Hemiptera) in relation to phytogeography and the Permo–Triassic Crisis. Paleontological Journal, Supplement 3, 34:S251S262.Google Scholar
Shcherbakov, D. E. 2008. On Permian and Triassic insect faunas in relation to biogeography and the Permian–Triassic boundary in the Volga Basin, European Russia. Paleontological Journal, 42:1531.Google Scholar
Stireman, J. O. III, Devlin, H., Carr, T. G., and Abbot, P. 2009. Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context. Molecular Phylogenetics and Evolution, 54:194210.Google Scholar
Thomas, B. A. 1969. A new British Carboniferous calamite cone, Paracalamostachys spadiciformis. Palaeontology, 12:253261.Google Scholar
Tubbs, P. K. 2003. Comment on the proposal to emend the Code with respect to trace fossils. Bulletin of Zoological Nomenclature, 60:141142.Google Scholar
Van Amerom, H. W. J. 1973. Gibt es Cecidien in Karbon bei Calamitien und Asterophylliten?, p. 6383. InJosten, K.-H.(ed.), Compte Rendus Septième Congrès International de Stratigraphie et de Geologie du Carbonifère. Van Acken, Krefeld, Germany.Google Scholar
Vasilenko, D. V. 2005. Damages on Mesozoic plants from the Transbaikalian locality Chernovskie Kopi. Paleontological Journal, 39:628633.Google Scholar
Vasilenko, D. V. 2007. Feeding damage on Upper Permian plants from the Sukhona River. Paleontological Journal, 41:207211.Google Scholar
Waggoner, B. M. 1999. Fossil oak galls from the Stinking Water paleoflora of Oregon (early Miocene). PaleoBios, 19:814.Google Scholar
Waggoner, B. M. and Poteet, M. F. 1996. Unusual leaf galls from the middle Miocene of northwestern Nevada. Journal of Paleontology, 70:10801084.Google Scholar
Wagner, R. H. and Castro, M. P. 1998. Neuropteris obtuse, a rare but widespread Late Carboniferous pteridosperm. Palaeontology, 41:122.Google Scholar
Weiss, C. E. 1876. Steinkohlen-Calimarien, mit besonderer Berücksichtigung ihrer Fructificationen. Neumann'schen Kartenhandlung, Berlin.Google Scholar
Yukawa, J. 1978. New midge galls from Kyushu. Memoirs of the Faculty of Agriculture of Kagoshima University, 14:93101.Google Scholar