Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T21:50:22.886Z Has data issue: false hasContentIssue false

Systematics and biostratigraphy of halobiid bivalves from the Martin Bridge Formation (Upper Triassic), northeast Oregon

Published online by Cambridge University Press:  20 May 2016

Christopher A. McRoberts*
Affiliation:
Department of Geology, Heroy Geology Laboratory, Syracuse University, Syracuse, New York 13244-1070

Abstract

A diverse Halobia fauna with rare ammonoids and conodonts is described from the type Martin Bridge Formation (Upper Triassic) of northeast Oregon. The composite section of black shale, mudstone, bedded micrite, limestone conglomerate, and halobiid lumachelle spans the Carnian–Norian boundary without apparent sedimentologic break or pronounced biotic extinction. The occurrence of Halobia radiata radiata Gemmellaro, Halobia? cf. teltschenensis (Kittl), H. superba superba Mojsisovics, and H. superba ornatissima Smith (nomen translatum) with the ammonoids Discotropites sp. and Arietoceltites? sp. low in the section indicates a late Carnian age (Dilleri?, Welleri to Macrolobatus Zones). These fossils occur below beds containing early Norian (Kerri Zone) H. beyrichi (Mojsisovics) and middle Norian (Rutherfordi?, Columbianus Zone) H. halorica Mojsisovics. The described fauna increases the halobiid and ammonoid diversity previously known from the Martin Bridge Formation despite synonymy of species previously reported from the section.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allasinaz, A., Gutnic, M., and Poisson, A. 1974. La formation de l'Isparta Çay: Calcaires à Halobies, Grès a plantes et Radiolarites d'âge Carnien(?)–Norien (Taurides-Région d'Isparta-Turquie), p. 1121. In Zapfe, H. (ed.), The stratigraphy of the Alpin–Mediterranean Triassic. Schrifenreihe Erdwissenschaftlichen Kommissiones, Österreich Akademie der Wissenschaften 2.Google Scholar
Benton, M. J. 1986. More than one event in the late Triassic mass extinction. Nature, 321:857861.CrossRefGoogle Scholar
Beurlen, K. 1944. Beiträge zur Stammengeschichte der muscheln. München Akademie Sitzungsberichte, 11:113131.Google Scholar
Blome, C. D., Reed, K. M., and Tailleur, I. L. 1988. Radiolarian biostratigraphy of the Otuk Formation in and near the National Petroleum Reserve in Alaska. U.S. Geological Survey Professional Paper 1399:725776.Google Scholar
Bronn, H. 1830. Ueber die Muschel-Versteinerungen des sud-Deuschen Steinsalzgebirges, welche bisher unter dem Namen Pectines salinarius zusammenbegriffen wurden. Jahrbuch für Mineralogie, Geognosie, Geologie, und Petrefaktenkunde, Heidelberg, 1:279285.Google Scholar
Brooks, H. C., and Vallier, T. L. 1978. Mesozoic rocks and tectonic evolution of eastern Oregon and western Idaho, p. 133145. In Howell, D. and McDougall, K. (eds.), Mesozoic Paleogeography of the Western United States, Pacific Coast Paleogeography Symposium 2. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, California.Google Scholar
Cafiero, B., and De Capoa Bonardi, P. 1980. Stratigraphy of the pelagic Triassic in the Budva-Kortor area (Crna-Gora, Montenegro, Yugoslavia). Bollettino della Società Paleontologica Italiana, 19:179204.Google Scholar
Cafiero, B., and De Capoa Bonardi, P. 1982. Biostratigrafia del Trias pelagico della Sicilia. Bollettino della Società Paleontologica Italiana, 21:3571.Google Scholar
Campbell, H. J. 1985. Stratigraphic significance of the Triassic bivalves Daonella and Halobia in New Zealand and New Caledonia. Unpubl. Ph.D. dissertation, Cambridge University, Cambridge, 208 p.Google Scholar
Carter, E. S., Orchard, M. J., and Tozer, E. T. 1989. Integrated ammonoid–conodont–radiolarian biostratigraphy, Late Triassic Kunga Group, Queen Charlotte Islands, British Columbia. Geological Survey Canada Paper 89-1H:2330.Google Scholar
Chen, C-C. 1976. Lamellibranch fossils of China. In Nanking Institute of Geology and Palaeontology, Academia Sinica (eds.), Science Press, Beijing, PRC, 522 p. [in Chinese].Google Scholar
De Capoa Bonardi, P. 1984. Halobia zones in the pelagic Late Triassic sequences of the central Mediterranean area. Bollettino della Società Paleontologica Italiana, 23:91102.Google Scholar
De Wever, P., Sanfilippo, A., Riedel, W., and Gruber, B. 1979. Triassic radiolarians from Greece, Sicily and Turkey. Micropaleontology, 25:75110.Google Scholar
Follo, M. F. In press. Sedimentology and stratigraphy of the Martin Bridge Limestone and Hurwal Formation (Late Triassic–Early Jurassic) from the Wallowa terrane, Oregon. U.S. Geological Survey Professional Paper.Google Scholar
Frech, F. 1909. Lethaea geognostica. Das Mesozoicum 1: die Trias. Stuggart, 632 p.Google Scholar
Gemmellaro, G. 1882. Sul Trias regione occidentale della Sicilia. Accedemia Nazionale del Lincei. Memoire 12, 3D ser., p. 451473.Google Scholar
Gray, J. E. 1847. A list of the genera of Recent Mollusca, their synonyms and types. Zoological Society of London, Proceedings, 15:129219.Google Scholar
Gruber, B. 1975. Unternorische Halobien (Bivalvia) aus Bosnien Jugoslavian. Sitzungsberichte der Österreichische Akademie Wissenschaften, math-naturwiss. (Abt. 1), 183:119130.Google Scholar
Gruber, B. 1976. Neue Ergebnisse auf dem Gebiete der Ökologie, Stratigraphie und Phylogenie der Halobien (Bivalvia). Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Österreich, Wien, 23:181198.Google Scholar
Gruber, B., Lein, R., and Seeger, M. 1980. Ein karnischer Tisovec-Kalk mit Halobia(?) clari n. spec. aus den St. Pauler Bergen. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Österreich, Wien, 26:167177.Google Scholar
Hallam, A. 1981. The end-Triassic bivalve extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 35:144.Google Scholar
Hallam, A. 1991. The end-Triassic mass extinction event. Geological Society of America Special Paper 247:577583.Google Scholar
Hayami, I. 1969. Notes on Mesozoic “planktonic” bivalves. The Journal of the Geological Society of Japan, 75:375383 [in Japanese with English summary].Google Scholar
Hillhouse, J. W., Grommé, C. S., and Vallier, T. L. 1982. Paleomagnetism and Mesozoic tectonics of the Seven Devils volcanic arc in northeastern Oregon. Journal of Geophysical Research, 87:37773794.Google Scholar
Hyatt, A., and Smith, J. P. 1905. The Triassic cephalopod genera of America. U.S. Geological Survey Professional Paper 40, 394 p.Google Scholar
Ichikawa, K. 1958. Zur Taxonomie und Phylogenie der triadischen “Pteriidae” (Lamellibranch.), mit besonderer Berucksichtigung der Gattung Claraia, Eumorphotis, Oxytoma und Monotis. Palaeontographica, A 3, p. 131212.Google Scholar
Jefferies, R. P. S., and Minton, P. 1965. The mode of life of two Jurassic species of “Posidonia” (Bivalvia). Palaeontology, 8:156185.Google Scholar
Johnson, A., and Simms, M. J. 1989. The timing and cause of Late Triassic marine invertebrate extinctions: evidence from scallops and crinoids, p. 174194. In Donavan, S. K. (ed.), Mass Extinctions: Processes and Evidence. Bellhaven, London.Google Scholar
Kauffman, E. G. 1988. The case of the missing community: low-oxygen adapted Paleozoic and Mesozoic bivalves (“flat clams”) and bacterial symbiosis in typical Phanerozoic seas. Geological Society of America, Abstracts with Programs, 20(7):A48.Google Scholar
Kiparisova, L. D., Bychkov, Y. M., and Polubotko, I. V. 1966. Upper Triassic bivalve molluscs from the northeast USSR. Vsesoyuznyy nauchno-issledovatel'skii instituta (VSEGEI), Magadan, 312 p. [in Russian].Google Scholar
Kittl, E. 1912. Materialen zu einer Monographie der Halobiidae und Monotidae der Trias. Resultate der Wissenschaftlichen Erforschung des Balatonsees, I Band, I Teil. Paleontologie Anhang., Wien, 229 p.Google Scholar
Kristan-Tollmann, E., Barkham, S., and Gruber, B. 1987. Potschenschichten, Zlambachmergel (Hallstatter Obertrias) und Liasfleckenmergel in Zentraltimor, nebst ihren Faunenelementen. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Österreich, Wien, 80:229285.Google Scholar
Kristan-Tollmann, E., and Tollmann, A. 1983. Tethys-Faunenelemente in der Trias der USA. Mitteilungen der Gesellschaft der Geologie und Bergbaustudenten in Österreich, Wien, 76:213272.Google Scholar
Krumbeck, L. 1924. Die Brachiopoden, Lamellibranchiaten und Gastropoden der Trias von Timor: II. Paläontologie von Timor XXII, 275 p.Google Scholar
Krystyn, L. 1973. Zur ammoniten und conodonte stratigraphie der Hallstatter Obertrias (Salzkammergut, Österreich). Abhandlungen der Geologischen Bundesanstalt, 1:113153.Google Scholar
Krystyn, L. 1980. Triassic conodont localities of the Salzkammergut region (Northern Calcareous Alps). Abhandlungen der Geologischen Bundensanstalt, 35:6198.Google Scholar
Malmquist, D. C. 1991. Galápagos islands: a Holocene analogue to the Wallowa accreted terrane, western North America. Geology, 19:675678.Google Scholar
May, S. R., and Butler, R. F. 1986. North American Jurassic apparent polar wander: implications for plate motion, paleogeography and Cordilleran tectonics. Journal of Geophysical Research, 91:1151911544.Google Scholar
McLearn, F. H. 1960. Ammonoid faunas of the Upper Triassic Pardonet Formation, Peace River Foothills, British Columbia. Geological Survey of Canada Memoir 311, 118 p.CrossRefGoogle Scholar
Mojsisovics, E. 1874. Uber Die Triadischen Pelecypoden-Gattungen Daonella und Halobia. Abhandlungen der k. k. Geologischen Reichsanstalt, 7:135.Google Scholar
Montanari, L., and Renda, P. 1976. Biostratigrafia del Trias di Monte Triona (Scicani). Bollettino della Società Geologica Italiana, 95:725744.Google Scholar
Muffler, L. J. P. 1967. Stratigraphy of the Keku Islets and neighboring parts of Kuiu and Kepreanof Islands, southeastern Alaska. U.S. Geological Survey, Bulletin 1241-C:152.Google Scholar
Münster, G. 1838. In Goldfuss, A. Abhandlungen und Beschaeibungen der Petrefacten Deutschlands und der angränzenden Länder. Petrefacten Germaniae 2, Dusseldorf, 150 p.Google Scholar
Newell, N. D. 1965. Classification of the Bivalvia. American Museum Novitates, 2206:125.Google Scholar
Newton, C. R. 1988. Significance of “Tethyan” fossils in the Cordillera. Science, 242:385391.Google Scholar
Newton, C. R., Whalen, M. T., Thompson, J. B., Prins, N., and Delalla, D. 1987. Systematics and paleoecology of Norian (Late Triassic) bivalves from a tropical island arc: Wallowa terrane, Oregon. Paleontological Society Memoir 22, 83 p.Google Scholar
Nolf, B. O. 1966. Structure and stratigraphy of part of the northern Wallowa Mountains. Unpubl. , Princeton University, Princeton, 135 p.Google Scholar
Orr, W. N. 1986. A Norian (Late Triassic) ichthyosaur from the Martin Bridge Limestone, Wallowa Mountains, Oregon, p. 4147. In Vallier, T. L. and Brooks, H. C. (eds.), Geology of the Blue Mountains regions of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Polubotko, I. V. 1980. Early Carnian Halobiidae of northeast Asia. Paleontological Journal, 1:3441.Google Scholar
Polubotko, I. V. 1984. Zonal and correlation significance of Late Triassic halobiids. Sovetskaya Geologiya, 6:4051 [in Russian].Google Scholar
Polubotko, I. V. 1988. On the morphology and systematics of the Late Triassic Halobiidae (bivalve mollusks). Annual of the all-union Paleontological Society, 31:90103 [in Russian].Google Scholar
Polubotko, I. V., Alabushev, A. I., and Bychkov, Y. M. 1990. Late Triassic halobiids (Bivalve Mollusks) from the Kenkeren Range (northeast USSR). Annual of the all-union Paleontological Society, 33:122139 [in Russian].Google Scholar
Ross, C. P. 1938. The geology of part of the Wallowa Mountains. Oregon Department of Geology Mineral Resources, Bulletin 7, 74 p.Google Scholar
Seilacher, A. 1990. Aberrations in bivalve evolution related to photo- and chemosymbosis. Historical Biology, 3:289311.Google Scholar
Senowbari-Daryan, B., and Stanley, G. D. 1988. Triassic sponges (Sphinctozoa) from Hells Canyon, Oregon. Journal of Paleontology, 62:419423.CrossRefGoogle Scholar
Sepkoski, J. J. 1986. Phanerozoic overview of mass extinctions, p. 277296. In Raup, D. M. and Sepkoski, J. J. (eds.), Patterns and Processes in the History of Life. Springer, Berlin.Google Scholar
Silberling, N. J., and Jones, D. L. 1987. Lithotectonic terrane map of the North American Cordillera. U.S. Geological Survey Map MF 1874-A.Google Scholar
Silberling, N. J., and Tozer, E. T. 1968. Biostratigraphic classification of the marine Triassic in North America. The Geological Society of America Special Paper 110, 63 p.CrossRefGoogle Scholar
Smith, D. W., and Allen, J. E. 1941. Geology and physiography of the northern Wallowa Mountains, Oregon. Oregon Department of Geology and Mineral Resources, Bulletin 12, 75 p.Google Scholar
Smith, J. P. 1912. The occurrence of coral reefs in the Triassic of North America. American Journal of Science, 33:9296.Google Scholar
Smith, J. P. 1927. Upper Triassic marine invertebrate faunas of North America. U.S. Geological Survey Professional Paper 141, 262 p.Google Scholar
Spath, L. F. 1951. Catalogue of the fossil Cephalopoda in the British Museum (Natural History), Part 5, The Ammonoidea of the Trias, 11:1228.Google Scholar
Stanley, G. D. 1986. Late Triassic Coelenterate faunas of western Idaho and northeastern Oregon, p. 2340. In Vallier, T. L. and Brooks, H. C. (eds.), Geology of the Blue Mountains Region of Oregon, Idaho, and Washington. U.S. Geological Survey Professional Paper 1435.Google Scholar
Stanley, G. D. 1988. History of early Mesozoic reef communities: a three step process. Palaios, 3:170183.Google Scholar
Stanley, G. D., and Beauvais, L. 1990. Middle Jurassic corals from the Wallowa terrane, west-central Idaho. Journal of Paleontology, 63:352362.Google Scholar
Stanley, G. D., and Senowbari-Daryan, B. 1986. Upper Triassic Dachsteintype reef limestone from the Wallowa Mountains, Oregon: first reported occurrence in the United States. Palaios, 1:172177.Google Scholar
Stanley, G. D., and Whalen, M. T. 1989. Triassic corals and spongiomorphs from Hells Canyon, Wallowa terrane, Oregon. Journal of Paleontology, 63:800819.Google Scholar
Tozer, E. T. 1967. A standard for Triassic time. Geological Survey of Canada Bulletin 156, 103 p.Google Scholar
Tozer, E. T. 1974. Definitions and limits of Triassic stages and substages: suggestions prompted by comparisons between North America and the Alpine–Mediterranean region, p. 195206. In Zapfe, H. (ed.), The stratigraphy of the Alpin–Mediterranean Triassic. Schrifenreihe Erdwissenschaftlichen Kommissiones, Österreich Akademie der Wissenschaften 2.Google Scholar
Tozer, E. T. 1984. The Trias and its ammonoids: the evolution of a time scale. Geological Survey of Canada, Miscellaneous Report 35, 171 p.Google Scholar
Vallier, T. L. 1977. The Permian and Triassic Seven Devils Group, western Idaho and northeastern Oregon. U.S. Geological Survey Bulletin 1437, 58 p.Google Scholar
Waller, T. R. 1978. Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Philosophical Transactions, Royal Society of London, 284:345365.Google Scholar
Whalen, M. T. 1988. Depositional history of an Upper Triassic drowned carbonate platform sequence: Wallowa terrane, Oregon and Idaho. Geological Society of America Bulletin, 100:10971110.Google Scholar
Wignall, P. B. 1988. Paper pectens—a black shale enigma? Palaeontological Association Annual Conference, Aston, p. 1718.Google Scholar