Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T11:31:41.193Z Has data issue: false hasContentIssue false

Teleost centra from uppermost Judith River Group (Dinosaur Park Formation, Campanian) of Alberta, Canada

Published online by Cambridge University Press:  14 July 2015

Donald B. Brinkman
Affiliation:
Royal Tyrrell Museum of Palaeontology Box 7500. Drumheller, Alberta, T0 0Y0, Canada
A. G. Neuman
Affiliation:
Royal Tyrrell Museum of Palaeontology Box 7500. Drumheller, Alberta, T0 0Y0, Canada

Abstract

The diversity and distribution of teleosts in the Dinosaur Park Formation of Alberta, Canada, is evaluated on the basis of precaudal centra. In order to avoid the erection of redundant taxa, and to include all teleost precaudal centra in a single system, a parataxonomic system is erected. Fifteen distinct basal groups, termed morphoseries, are described. Growth-related changes and serial variation along the column are taken into account in defining these groups, so each morphoseries is interpreted as representing a distinct, low-level taxon of teleost. One of the morphoseries could be identified as hiodontid and two as acanthomorph on the basis of derived character-states. This is the first Cretaceous record of hiodontids in North America. In addition, elopomorphs, clupeomorphs, salmoniforms, and osteoglossoforms are recognized on the basis of general similarity with the precaudal centra in extant members of these groups. Two teleosts of intermediate level of evolution, but of uncertain relationships, are also present. Differences in the stratigraphic distributions of the morphoseries allow two distinct assemblages of teleosts to be recognized in the formation. One is present in fluvial-dominated localities of the Dinosaur Park Formation, the second in a complex of mud-filled channels in the Lethbridge Coal Zone. The paleoecological complexity present in the formation, and the high level of diversity of teleosts in these beds, emphasizes the importance of including disarticulated remains in studies of the diversity and distribution of teleosts in the Cretaceous.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arratia, G. 1999. The monophyly of Teleostei and stem-group teleosts. Consensus and disagreements, p. 265334. In Stiassny, M., Parenti, L., and Johnson, G. D. (eds.), Mesozoic Fishes: Systematics and Paleoecology. Verlag Dr. Friedrich Pfeil, München, Germany.Google Scholar
Bardack, D. 1965. Anatomy and evolution of chirocentrid fishes. The University of Kansas, Paleontological contributions, Vertebrata. Number 10, 88 p.Google Scholar
Bardack, D. 1970. A new teleost from the Oldman Formation (Cretaceous) of Alberta. National Museums of Canada Publications in Paleontology, 3:18.Google Scholar
Blum, S. 1991. Brannerion Jordan, 1919, p. 218–237. In Maisey, J. G. (ed.), Santana Fossils: An Illustrated Atlas. T.F.H. Publications, Inc., New Jersey, 459 p.Google Scholar
Brinkman, D. B. 1990. Paleoecology of the Judith River Formation (Campanian) of Dinosaur Provincial Park, Alberta, Canada: Evidence from vertebrate microfossil localities. Palaeogeography, Palaeoclimatology, Palaeoecology, 78:3754.CrossRefGoogle Scholar
Brinkman, D. B., Ryan, M. J., and Eberth, D. A. 1998. The paleogeographic and stratigraphic distribution of ceratopsids (Ornithischia) in the Upper Judith River Group of Western Canada. Palaios, 13:160169.CrossRefGoogle Scholar
Dodson, P. P. 1983. A faunal review of the Judith River (Oldman) Formation, Dinosaur Provinicial Park, Alberta. The Mosasaur, 1:89118.Google Scholar
Eberth, D. A. 1990. Stratigraphy and sedimentology of vertebrate microfossil localities in uppermost Judith River Formation (Campanian) of Dinosaur Provincial Park, south-central Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 78:136.CrossRefGoogle Scholar
Eberth, D. A., and Brinkman, D. B. 1997. Paleoecology of an estuarine paleochannel complex in the Dinosaur Park Formation (Judith River Group, Upper Cretaceous) of southern Alberta, Canada. Palaios, 12:4358.CrossRefGoogle Scholar
Eberth, D. A., and Hamblin, A. P. 1993. Tectonic, stratigraphic, and sedimentologic significance of a regional discontinuity in the Upper Judith River Group (Belly River wedge) of southern Alberta, Saskatchewan and northern Montana. Canadian Journal of Earth Sciences, 30:174200.CrossRefGoogle Scholar
Estes, R. 1964. Fossil vertebrates from the Late Cretaceous Lance Formation, Eastern Wyoming. University of California Publications in Geological Sciences, 49:1180.Google Scholar
Estes, R. 1969. Two new Late Cretaceous fishes from Montana and Wyoming. Breviora, Number 335, 15 p.Google Scholar
Estes, R., Berberian, P., and Meszoely, C. A. M. 1969. Lower vertebrates from the Late Cretaceous Hell Creek Formation, McCone County, Montana. Breviora, Number 337, 33 p.Google Scholar
Ford, E. 1937. Vertebral variation in teleostean fishes. Marine Biological Association of the U.K., Journal, New Series, 32:1060.Google Scholar
Forey, P. L. 1973. A revision of elopiform fishes, fossil and Recent. British Museum (Natural History) Bulletin, Geology, Supplement 10, 222 p.CrossRefGoogle Scholar
Forey, P. L. 1977. The osteology of Notelops Woodward, Rhacolepis Agassiz and Pachyrhizodus Dixon (Pisces; Teleostei). British Museum (Natural History) Bulletin, Geology, 28:125204.CrossRefGoogle Scholar
Goodrich, E. S. 1958. Studies on the Structure and Development of Vertebrates. Dover Publications, Inc. New York, 906 p.Google Scholar
Grande, L., and Grande, T. 1999. A new species of Notogoneus (Teleostei: Gonorhynchidae) from the Upper Cretaceous Two Medicine Formation of Montana, and the poor Cretaceous record of freshwater fishes from North America. Journal of Vertebrate Paleontology, 19:612622.CrossRefGoogle Scholar
Johnson, G. D., and Patterson, C. 1996. Relationships of lower euteleostean fishes, p. 251332. In Stiassny, M., Parenti, L., and Johnson, G. D. (eds.), Mesozoic Fishes: Systematics and Paleoecology. Verlag Dr. Friedrich Pfeil, München, Germany.Google Scholar
Li, G.-Q. 1996. A new species of Late Cretaceous osteoglossid (Teleostei) from the Oldman Formation of Alberta, Canada, and its phylogenetic relationships, p. 285298. In Arratia, G. and Viohl, G. (eds.), Mesozoic Fishes: Systematics and Paleoecology. Verlag Dr. Friedrich Pfeil, München, Germany.Google Scholar
Lundberg, J. G. 1975. The fossil catfishes of North America. University of Michigan Museum of Paleontology, Claude W. Hibbard Memorial, 2:151.Google Scholar
Maisey, J. G. 1991. Rhacolepis Agassiz, 1841, 248–257. In Maisey, J. G. (ed.), Santana Fossils: An Illustrated Atlas. T.F.H. Publications, Inc., New Jersey, 459 p.Google Scholar
Nelson, J. S. 1994. Fishes of the World (third edition). Wiley, New York, 600 p.Google Scholar
Poyato-Ariza, F. J. 1996. A revision of the ostariophysan fish family chanidae with special reference to the Mesozoic forms. Palaeo Ichthyologica, 6:552.Google Scholar
Ridewood, W. G. 1904. On the cranial osteology of the fishes of the families Mormyridae, Notopteridae and Hyodontidae. Journal of the Linnean Society, London, Zoology, 29:188217.CrossRefGoogle Scholar
Rojo, A. L. 1991. Dictionary of Evolutionary Fish Osteology. CRC Press, Boca Raton, Florida, 273 p.Google Scholar
Rosen, D. E. 1985. An essay on euteleostean classification. American Museum Novitates. Number 2719, 25 p.Google Scholar
Rowe, T., Cifelli, R. L., Lehman, T. M., and Weil, A. 1992. The Campanian Terlingua local fauna, with a summary of other vertebrates in the Aguja Formation, Trans-Pecos Texas. Journal of Vertebrate Paleontology, 12:472493.CrossRefGoogle Scholar
Stewart, A. 1900. Cretaceous fishes; teleosts. Kansas Geological Survey, 6:257403.Google Scholar
Taverne, L. 1977. Ostéologie, Phylogénèse et systématique des Téléostéens fossiles et actuels du super-ordre des Osteoglossomorphes; Première partie, Ostéologie des genres Hiodon, Eohiodon, Lycoptera, Osteoglossum, Sclerophages, Heterotis et Arapaima . Académie Royale de Belgique, Classe des Sciences, Mémoires, In–8°, 42:1235.Google Scholar
Taverne, L. 1978. Ostéologie, Phylogénèse et systématique des Téléostéens fossiles et actuels du super-ordre des Osteoglossomorphes; Deuxième partie, Ostéologie des genres Phareodus, Phareoides, Brychaetus, Musperia, Pantodon, Singida, Notopterus, Xenomystus et Papyrocranus . Académie Royale de Belgique, Classe des Sciences, Mémoires, In-8°, 42:1213.Google Scholar
Taverne, L. 1979. Ostéologie, Phylogénèse et systématiques des Téléostéens fossiles et actuels du super-ordre des Osteoglossomorphes; Troisième partie, Evolution des structures ostéologiques et conclusions générales relatives à la Phylogénese et à la systématique du super-ordre; Addendum. Académie Royale de Belgique, Classe des Sciences, Mémoires, In-8°, 43:1168.Google Scholar
Wilson, M. V. H. 1977. Middle Eocene freshwater fishes from British Columbia. Life Sceinces Contributions of the Royal Ontario Museum, Number 113, 61 p.Google Scholar
Wilson, M. V. H. 1980. Oldest known Esox (Pisces: Esocidae), part of a new Paleocene teleost fauna from western Canada. Canadian Journal of Earth Sciences, 17:307312.CrossRefGoogle Scholar
Wilson, M. V. H., Brinkman, D. B., and Neuman, A. G. 1992. Cretaceous Esocoidei (Teleostei): early radiation of the pikes in North American fresh waters. Journal of Paleontology, 66:839846.CrossRefGoogle Scholar