Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T21:47:58.207Z Has data issue: false hasContentIssue false

Theoretical morphology of echinoid growth

Published online by Cambridge University Press:  20 December 2017

David M. Raup*
Affiliation:
University of Rochester, Rochester, New York

Abstract

Deutler's classic work (1926) provides the basis for an analysis of plate growth in echinoids. Deutler showed that the concentric growth rings found within each plate may be used to reconstruct the ontogeny of the entire plate pattern.

New observations of growth-line configurations, particularly in Strongylocentrotus pallidus (Sars), have been used to derive a general model for echinoid growth. The plate mosaic is assumed to be the result of close packing of the growing plates. The shape of a given plate thus depends on its size and position relative to surrounding plates.

The rate of meridional growth of a plate can be shown to change regularly with increasing distance from the echinoid's apical system. Migration of plates away from the apical system thus causes change in the rate of plate growth. The rate of plate migration is strongly influenced, in turn, by the rate of supply of new plates at the apical system.

A mathematical model has been developed from these considerations which, when treated by digital computer (with x-y plotter output), produces ideal plate patterns (including growth rings). The constants in the model may be varied to produce a broad spectrum of echinoid plate patterns.

Type
Research Article
Copyright
Copyright © 1968 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonner, J. T., (ed.), 1961, On growth and form, by D'Arcy W. Thompson: Cambridge, Cambridge Univ. Press, 346 p.Google Scholar
Deutler, Fritz, 1926, Über das Wachstum der Seeigelskeletts: Zool. Jahrb., Abt. Anat. u. Ontog., v. 48, p. 119200.Google Scholar
Durham, J. W., 1955, Classification of clypeasteroid echinoids: Univ. Calif., Pubs. Geol. Sci., v. 31, p. 73198.Google Scholar
Fejes Toth, L., 1964, What bees know and what they do not know: Amer. Math. Soc., Bull., v. 70, p. 468481.CrossRefGoogle Scholar
Gordon, Isabella, 1926a, The development of the calcareous test of Echinus miliaris : Royal Soc. (London), Philos. Trans., ser. B, v. 214, p. 259312.Google Scholar
Gordon, Isabella, 1926b, On the development of the calcareous test of Echinocardium cordatum : Royal Soc. (London), Philos. Trans., ser. B, v. 215, 255313.Google Scholar
Gordon, Isabella, 1929, Skeletal development in Arbacia, Echinarachnius, and Leptasterias : Royal Soc. (London), Philos. Trans., ser. B, v. 217, p. 289334.Google Scholar
Gustafson, T., 1963, Cellular mechanisms in the morphogenesis of the sea urchin embryo: Exptl. Cell Res., v. 32, p. 570589.CrossRefGoogle ScholarPubMed
Hawkins, H. L., 1920, The morphology and evolution of the ambulacrum in the Echinoidea Holectypoida: Royal Soc. (London), Philos. Trans., ser. B, v. 209, p. 377480.Google Scholar
Jackson, R. T., 1912, Phylogeny of the Echini, with a revision of Paleozoic species: Boston Soc. Nat. Hist., Mem., v. 7, p. 1490.Google Scholar
Kier, P. M., 1958, North American Paleozoic echinoids: Smithsonian Misc. Coll., v. 135, no. 9, p. 126.Google Scholar
Lovén, S., 1874, Études sur les Echinoidees: K. Svenska Vetensk. Akad. Lefnadsteck., Handl., v. 11 (n.s.), p. 191.Google Scholar
Medawar, P. B., 1945, Size, shape, and age, in Le Gros Clark, W. E., & Medawar, P. B., (eds.), Essays on growth and form presented to D'Arcy Wentworth Thompson: Oxford, Oxford Univ. Press, p. 157187.Google Scholar
Melville, R. V., & Durham, J. W., 1966, Skeletal morphology, in Moore, R. C., (ed.), Treatise on invertebrate paleontology, pt. U: Geol. Soc. America and Univ. Kansas Press, p. 220257.Google Scholar
Mortensen, Th., 1943, A monograph of the Echinoidea, vol. 3, pt. 3 (Camarodonta, II): Copenhagen, C. A. Reitzel, 446 p.Google Scholar
Mortensen, Th., 1950, A monograph of the Echinoidea, vol. 5, pt. 1 (Spatangoida, I): Copenhagen, C. A. Reitzel, 432 p.Google Scholar
Raup, D. M., 1966, The endoskeleton, in Boolootian, R. A., (ed.), Physiology of Echinodermata: New York, Interscience Publ., p. 379395.Google Scholar
Thompson, D'A. W., 1917, On growth and form: Cambridge, Cambridge Univ. Press, 794 p.CrossRefGoogle Scholar
Thompson, D'A. W., 1942, On growth and form: Cambridge, Cambridge Univ. Press (2nd ed.), 1116 p.Google Scholar
Übisch, , von, L., 1913, Die Anlage und Ausbildung des Skeletsystems einiger Echiniden und die Symmetrieverhältnisse von Larve und Imago: Z. wiss. Zool., v. 104, p. 119156.Google Scholar
Übisch, L. von, 1927, Über die Symmetrieverhältnisse von Larve und Imago bei regulären und irregulären Seeigeln: Z. wiss. Zool., v. 129, p. 541566.Google Scholar
Übisch, L. von, 1937, Die normale Skelettbildung bei Echinocyamus pusillus und Psammechinus miliaris und die Bedeutung dieser Vorgänge für die Analyse der Skelette von Keimblatt-Chimären: Z. wiss. Zool., v. 149, p. 402476.Google Scholar
Walpert, L., & Gustafson, T., 1961, Studies on the cellular basis of morphogenesis of the sea urchin embryo: Exptl. Cell Res., v. 25, p. 311325.CrossRefGoogle Scholar