Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:56:00.678Z Has data issue: false hasContentIssue false

The youngest carpoid: occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma

Published online by Cambridge University Press:  20 May 2016

Dennis R. Kolata
Affiliation:
Illinois State Geological Survey, 615 E. Peabody, Champaign 61820
Terrence J. Frest
Affiliation:
Thomas Burke Memorial Washington State Museum, DB-10, University of Washington, Seattle 98195
Royal H. Mapes
Affiliation:
Department of Geological Sciences, Ohio University, Athens 45701

Abstract

Abundant, well-preserved specimens of a new peltocystidan mitrate carpoid, Jaekelocarpus oklahomensis n. gen. and sp., have been discovered in the Pennsylvanian (Morrowan Series) Gene Autry Shale Member, Golf Course Formation, in southern Oklahoma. The new carpoid postdates the youngest previously known carpoids (Middle Devonian) by about 65 million years. It is characterized by a small (to 4 mm in length) globose theca composed of six plates: two large adaulacophorals, two large marginals, and two relatively small plates that frame the main thecal orifice. One of the plates at the orifice bears a single stout spine. The theca and plates that comprise the theca display a high degree of bilateral symmetry. In contrast, the styloid has an asymmetrical array of spines and blades.

We hypothesize that most mitrates, including this one, were adapted to an infaunal life mode. The streamlined, generally symmetrical body shape is an adaptation to moving on or through the substrate. Spines and blades on the lower surface of the styloid and proximal aulacophore are inferred to be adaptations for gripping the substrate as the animal pulled itself backwards (aulacophore first). The main thecal orifice opposite the aulacophore was the site of both mouth and anus. Evidence for a sluggish, epifaunal life mode in the cornute carpoids includes the typically flattened, asymmetrical body, the presence of downward projecting spines and knobs on the marginal thecal plates of many species, and the specialized thecal pores and slits that faced away from the substrate.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1872. Système Silurien du Centre de la Bohême, Supplement au v. I. Trilobites, Crustacés divers, et Poissons. Prague, 647 p.Google Scholar
Bather, F. A. 1900. The Echinodermata, Pt. III, p. 1126. In Lankester, E. R. (ed.), A Treatise on Zoology. Adam and Charles Black, London.Google Scholar
Caster, K. E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletins of American Paleontology, 34(141):147.Google Scholar
Chauvel, J. 1941. Recherches sur les cystoides et les carpoïdes armoricains. Mémoires de la Societé géologique et minéralogique de Bretagne, 5:1286.Google Scholar
Craske, A. J., and Jefferies, R. P. S. 1989. A new mitrate from the Upper Ordovician of Norway, and a new approach to subdividing a plesion. Palaeontology 32:6999.Google Scholar
Cripps, A. P. 1988. A new species of stem-group chordate from the Upper Ordovician of northern Ireland. Palaeontology, 31:10531077.Google Scholar
Cripps, A. P. 1989. A new stem-group chordate (Cornute) from the Llandeilo of Czechoslovakia and the cornute-mitrate transition. Zoological Journal of the Linnean Society of London, 96:4985.Google Scholar
Cuenot, L. 1953. Classe des heterosteles, p. 599606. In Piveteau, Jean (ed.), Traité de Paléontologie 3. Masson, Paris.Google Scholar
Fay, R. O., Friedman, S. A., Johnson, K. S., Roberts, J. F., Rose, W. D., and Sutherland, P. K. 1979. The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States—Oklahoma. U.S. Geological Survey Professional Paper 1110–R:R1R3.Google Scholar
Frest, T. J. 1988. Functional morphology and homologies in cornute and mitrate echinoderms, p. 797. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (ed.), Echinoderm Biology, Proceedings of the Sixth International Echinoderm Conference. A. A. Balkema, Rotterdam-Brookfield.Google Scholar
Frest, T. J., Kolata, D. R., and Mapes, R. H. 1985. The youngest carpoid: occurrence, affinities and life mode of a Pennsylvanian mitrate from Oklahoma. Geological Society of America, Abstracts with Programs, 17(7):586.Google Scholar
Gill, E. D. and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology, 41:171.Google Scholar
Gordon, M. Jr. 1960. Some American mid-continent Carboniferous cephalopods. Journal of Paleontology, 34:133151.Google Scholar
Gordon, M. Jr. 1964. Carboniferous cephalopods of Arkansas. U.S. Geological Survey Professional Paper 460, 322 p.Google Scholar
Jaekel, O. 1901. Über Carpoideen, eine neue Klasse von Pelmatozoen. Zeitschrift der Deutschen geologischen Gesellshaft, 52:661677.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Palaontologie Zeitschrift, 3:1128.Google Scholar
Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities. Symposium of the Zoological Society of London, 20:163208.Google Scholar
Jefferies, R. P. S. 1968a. Fossil chordates with echinoderm affinities. Proceedings of the Geological Society of London, 1649:128140.Google Scholar
Jefferies, R. P. S. 1968b. The subphylum Calcichordata (Jefferies, 1967): primitive fossil chordates with echinoderm affinities. Bulletins of the British Museum (Natural History) Geology, 16(6):243339.Google Scholar
Jefferies, R. P. S. 1969. Ceratocystis perneri Jaekel—a Middle Cambrian chordate with echinoderm affinities. Palaeontology, 12:494535.Google Scholar
Jefferies, R. P. S. 1971. Some comments on the origin of chordates. Journal of Paleontology, 45:910912.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of Amphioxus. Philosophical Transactions of the Royal Society of London, 265:406469.Google Scholar
Jefferies, R. P. S. 1975. Fossil evidence concerning the origin of chordates. Symposium of the Zoological Society of London, 36:253318.Google Scholar
Jefferies, R. P. S. 1979a. The origin of chordates—a methodological essay, p. 443477. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. Systematics Association Special Volume 12.Google Scholar
Jefferies, R. P. S. 1979b. Calcichordates, p. 161167. In Fairbridge, R. W. and Jablonski, D. (eds.), The Encyclopedia of Paleontology. Dowden, Hutchison, and Ross, Stroudsburg, Pennsylvania.Google Scholar
Jefferies, R. P. S. 1980. Zur Fossilgeschichte des Ursprungs der Chordaten und der Echinodermen. Zoologisches Jahrbuch (Anatomie), 103:285353.Google Scholar
Jefferies, R. P. S. 1981a. Fossil evidence on the origin of the chordates and echinoderms, p. 487561. In Ranzi, L. (ed.), Origine dei grandi phyla dei metazoa. Atti dei Convegnie Lincei, 49.Google Scholar
Jefferies, R. P. S. 1981b. In defence of the calcichordates. Zoological Journal of the Linnean Society, 73:351396.CrossRefGoogle Scholar
Jefferies, R. P. S. 1982. The calcichordate controversy—comments on Notocarpos garratti Philip. Alcheringa, 6:78.Google Scholar
Jefferies, R. P. S. 1984. Locomotion, shape, ornament and external ontogeny in some mitrate calcichordates. Journal of Vertebrate Paleontology, 4:292319.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), Dorset Press, Dorchester, Dorset, 376 p.Google Scholar
Jefferies, R. P. S., and Lewis, D. N. 1978. The English Silurian fossil Placocystites forbesianus and the ancestry of the vertebrates. Philosophical Transactions of the Royal Society of London (B), 282(990):205323.Google Scholar
Jefferies, R. P. S., Lewis, M., and Donovan, S. K. 1987. Protocystites menevensis—a stem-group chordate (Cornuta) from the Middle Cambrian of South Wales. Palaeontology, 30:429484.Google Scholar
Jefferies, R. P. S., and Prokop, R. J. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships. Biological Journal of the Linnean Society, 4:69115.Google Scholar
Kirk, E. 1911. The structure and relationships of certain eleutherozoic Pelmatozoa. U.S. National Museum, Proceedings, 41:1137.Google Scholar
Kolata, D. R. 1982. The cornute and mitrate controversy—a review and commentary, p. 91. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the Fourth International Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Kolata, D. R. 1985. Life modes of cornute and mitrate carpoids, p. 159. In Keegan, B. F. and O'Connor, B. S. (eds.), Echinodermata, Proceedings of the Fifth International Echinoderm Conference, Galway, Ireland. A. A. Balkema, Rotterdsam–Boston.Google Scholar
Kolata, D. R., and Guensburg, T. E. 1979. Diamphidiocystis, a new mitrate “carpoid” from the Cincinnatian (Üpper Ordovician) Maquoketa Group in southern Illinois. Journal of Paleontology, 53:11211135.Google Scholar
Kolata, D. R., and Jollie, M. 1982. Anomalocystitid mitrates (Stylophora—Echinodermata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the Upper Mississippi Valley Region. Journal of Paleontology, 56:631653.Google Scholar
McCaleb, J. A. 1968. Lower Pennsylvanian ammonoids from the Bloyd Formation of Arkansas and Oklahoma. Geological Society of America, Special Paper 96, 123 p.Google Scholar
McCaleb, J. A., and Furnish, W. M. 1964. The Lower Pennsylvanian ammonoid genus Axinolobus in the southern Midcontinent. Journal of Paleontology, 38:249255.Google Scholar
Miller, A. K., and Moore, C. A. 1938. Cephalopods from the Carboniferous Morrow Group of northern Arkansas and Oklahoma. Journal of Paleontology, 12:341354.Google Scholar
Nichols, D. 1962. Echinoderms. Hutchinson University Library, London, 200 p.Google Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora, p. 347361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Philip, G. M. 1979. Carpoids—echinoderms or chordates? Biological Reviews, 54:439471.Google Scholar
Quinn, J. H., and Carr, L. C. 1963. New Pennsylvanian Diaboloceras from northwest Arkansas. Oklahoma Geology Notes, 23:111118.Google Scholar
Saunders, W. B., Manger, W. L., and Gordon, M. Jr. 1977. Late Mississippian and Early Pennsylvanian ammonoid biostratigraphy of northern Arkansas, p. 117138. In Sutherland, P. K. and Manger, W. L. (eds.), Upper Chesterian–Morrowan stratigraphy and the Mississippian–Pennsylvanian boundary in northeastern Oklahoma and northwestern Arkansas. Oklahoma Geological Survey Guidebook 18, 185 p.Google Scholar
Spencer, W. K. 1938. Some aspects of evolution in Echinodermata, p. 287301. In de Beer, G. R. (ed.), Evolution: Essays on Aspects of Evolutionary Biology Presented to Professor E. S. Goodrich on his Seventieth Birthday. Clarendon Press, Oxford.Google Scholar
Termier, H., and Termier, G. 1952. Les goniatites du namuro-moscovien (Pennsylvanian) de Kenadza (Sud-Oranais, Algerie). Annales du Paleontologie, tome 38, p. 134.Google Scholar
Ubaghs, G. 1961. Sur la nature de l'organe appèlé tige ou pedoncule chez les carpoïdes Cornuta et Mitrata. Compte Rendus Hebdomadaires des Sciences, 253:27382740.Google Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology, 37:11331142.Google Scholar
Ubaghs, G. 1967a. Le genre Ceratocystis Jaekel (Echinodermata, Stylophora). The University of Kansas Paleontological Contributions, 22:116.Google Scholar
Ubaghs, G. 1967b. Stylophora, p. S495S565. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, P. S, Echinodermata 1, Volume 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1969. Les echinodermes carpoides de l'Ordovicien inférieur de la Montagne Noire. Cahiers de Paléontologie, Paris, 112 p.Google Scholar
Ubaghs, G. 1971. Diversité et specialisation des plus anciens echinodermes que l'on connaisse. Biological Reviews, 46:157200.Google Scholar
Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Review of Earth and Planetary Sciences, 3:7998.CrossRefGoogle Scholar
Ubaghs, G. 1978. Classification of the echinoderms, p. T359T371. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2, Vol. 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchecoslovaquie. Paläontologische Zeitschrift, 53:98119.Google Scholar
Ubaghs, G. 1981. Reflexions sur la nature et la fonction de l'appendice articulé des carpoides Stylophora (Echinodermata). Annales de Paléontologie Invertèbrés, 67:3348.Google Scholar
Ubaghs, G. 1983. Echinodermata. Notes sur les echinodermes de l'Ordovicien inférieur de la Montagne Noire (France), Chapter 3, p. 3355. In Courtessole, R., Marek, L., Pillet, J., Ubaghs, G., and Vizcaino, D., Calymenina, Echinodermata et Hyolitha de l'Ordovicien de la Montagne Noire (France Meridionale). Mémoire de la Societé d'Etudes Scientifiques de l'Aude, Carcassonne, France.Google Scholar
Whitehouse, F. W. 1941. Early Cambrian echinoderms similar to larval stages of Recent forms. Queensland Museum, Memoir 11(1):128.Google Scholar