Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T03:26:27.985Z Has data issue: false hasContentIssue false

Amino acid residues in conodont elements

Published online by Cambridge University Press:  14 July 2015

A. Kemp*
Affiliation:
Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072, Australia,

Abstract

Thermally unaltered conodont elements, brachiopods, and vertebrates were analyzed with reverse phase high profile liquid chromatography to locate and quantify amino acid remnants of the original organic matrix in the fossils. No consistent similarities in amino acid content were found in conodont taxa, and criteria based on organic residues appear to have no taxonomic significance in the fossils tested from these localities. However, hydroxyproline, an amino acid that is found in the collagen molecules of animals, as well as in the glycoproteins in the cell walls and reproductive tissues of certain plants, is represented in most taxa. The organic matter retained in the impermeable crowns of conodont elements might have been derived originally from a form of collagen. Biochemical analyses, correlated with histochemical tests, demonstrate that organic matter is an integral part of the hyaline tissue of the element crown and not the result of surface contamination. Tests of a range of vertebrate and invertebrate fossil hard tissues produced similar results. The analyses indicate that hyaline tissue in the conodont element crown is not a form of vertebrate enamel, which contains no collagen. Albid tissue, with little or no organic content, is not a form of vertebrate bone or dentine, both based on collagen and low in mineral. Although these results do not help to determine the phylogenetic affinities of conodont animals, they indicate that conodont elements do not contain hard tissues characteristic of vertebrate animals.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, R. J., and Purnell, M. A. 1996. The conodont controversies. Tree, 11:463467.Google ScholarPubMed
Bada, J. L. 1991. Amino acid cosmogeochemistry. Philosophical Transactions of the Royal Society of London B, 333:349358.Google Scholar
Barnes, C. R., Sass, D. B., and Monroe, E. A. 1973. Ultrastructure of some Ordovician conodonts, p. 130. In Rhodes, F. H. T. (ed.), Geological Society of America Special Paper, 141.Google Scholar
Butler, W. T., Ritchie, H. H., and Bronckers, A. L. J. J. 1997. Extracellular matrix proteins of dentine, p. 107117. In Chadwick, D. J. and Cardew, G. (eds.), Dental Enamel: Ciba Foundation Symposium 205. John Wiley and Sons, Chichester.Google Scholar
Cassab, G. I. 1998. Plant cell wall proteins. Annual Review of Plant Physiology and Plant Molecular Biology, 49:281309.CrossRefGoogle ScholarPubMed
Constantin, V. S., and Mowry, R. W. 1968. Selective staining of human dermal collagen. II The use of picrosirius red F3BA with polarisation microscopy. Journal of Investigative Dermatology, 50:419423.CrossRefGoogle Scholar
Cooper, B. J. 1981. Early Ordovician conodonts from the Horn Valley Siltstone, Central Australia. Palaeontology, 24:147183.Google Scholar
Donoghue, P. C. J. 1998. Growth and patterning in the conodont skeleton. Philosophical transactions of the Royal Society of London B, 353:633666.CrossRefGoogle Scholar
Donoghue, P. C. J., and Chauff, K. M. 1998. Conchodontus, Mitrellataxis and Fungulodus: Conodonts, fish or both? Lethaia, 31:283292.CrossRefGoogle Scholar
Epstein, A. G., Epstein, J. B., and Harris, L. D. 1977. Conodont Color Alteration—an Index to Organic Metamorphism. U.S. Geological Survey Professional Paper, 995:127. United States Government Printing Office, Washington.Google Scholar
Fåhraeus, L. E., and Fåhraeus-von Ree, G. E. 1987. Soft tissue matrix of decalcified pectiniform elements of Hindeodella confluens (Conodonta: Silurian), p. 105110. In Aldridge, R. J. (ed.), Paleobiology of Conodonts. Ellis Horwood, Chichester.Google Scholar
Fåhraeus, L. E., and Fåhraeus-von Ree, G. E. 1993. Histomorphology of sectioned and stained 415 Ma Old Soft-tissue Matrix from Internal Fluorapatite Skeletal Elements of an Extinct Taxon, Conodontophorida (Conodonta), p. 107112. In Kobayashi, I., Mutvei, H., and Sahni, A. (eds.), Structure, Formation and Evolution of Fossil Hard Tissues. Tokyo University Press, Tokyo.Google Scholar
Glenister, B. F., Klapper, G., and Chauff, K. M. 1976. Conodont pearls? Science, 193:571573.CrossRefGoogle ScholarPubMed
Gross, W. 1960. Über die Basis bei Gattungen Palmatolepis und Polygnathus (Conodontida). Paläontologiske Zhurnal, 34:4058.Google Scholar
Hall, J. C. 1990. Conodontophorida, Pt. 10, p. 8185, and pls. 193-200. In Carter, J. G. (ed.), Skeletal Mineralization: Patterns, Processes and Evolutionary Trends, Volume II, Altas and Index. Van Nostrand Reinhold, New York.Google Scholar
Jeppsson, L., Fredholm, D., and Mattiasson, B. 1985. Acetic acid and phosphatic fossils—a warning. Journal of Paleontology, 59:952956.Google Scholar
Kemp, A. 1992a. New neoceratodont cranial remains from the Late Oligocene-Middle Miocene of Northern Australia with comments on generic characters for Cenozoic lungfish. Journal of Vertebrate Paleontology, 12:284293.CrossRefGoogle Scholar
Kemp, A. 1992b. Ultrastructure of the developing dentition in the Australian lungfish, Neoceratodus forsteri (Krefft), p. 1133. In Smith, P. and Tchernov, E. (eds.), Structure, Function and Evolution of Teeth. Freund Publishing House, Tel Aviv.Google Scholar
Kemp, A. 2000. A refined method for the staining of organic remnants in conodont elements. Ichthyolith Issues, 20:4445.Google Scholar
Kemp, A. In press. Hyaline tissue of thermally unaltered conodont elements and the enamel of vertebrates. Alcheringa.Google Scholar
Kemp, A., and Nicoll, R. S. 1995. Protochordate affinities of conodonts. Courier Forschungs.-Institut Senckenberg., 182:235245.Google Scholar
Kemp, A., and Nicoll, R. S. 1996. Histology and histochemistry of conodont elements. Modern Geology, 20:287302.Google Scholar
Lindström, M., and Ziegler, W. 1970. Feinstrukturelle Untersuchungen an Conodonten 1. Die Ueberfamilie Panderodontacea. Geologica et Palaeontologica, 5:933.Google Scholar
Mitchell, L., Curry, G. B., and Fallick, A. E. 1995. Stable isotope and amino acid profiles of the New Zealand giant Pliocene oyster Crassotrea ingens . Lethaia, 28:237243.CrossRefGoogle Scholar
Müller, K. J. 1981. Introduction to the Conodonta: Micromorphology of Elements, internal structure, p. 20–14. In Robinson, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. W, supplement 2, Conodonta. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Murray, R. K., and Keeley, F. W. 1996. The extracellular matrix, p. 667685. In Murray, R. K., Granner, D. K., Mayes, P. A., and Rodwell, V. W. (eds.), Harper's Biochemistry, 24th edition. Appleton and Lange, Stamford, Connecticut.Google Scholar
Pietzner, H., Vahl, J., Werner, H., and Ziegler, W. 1968. Zur chemischen Zusammensetzung und Mikromorphologie der Conodonten. Palaeontographica Abteilung A, 128:115152.Google Scholar
Prostak, K. P., Seifert, P., and Skobe, Z. 1992. Fish tooth Formation: an assessment of the biological factors affecting fluoride content of enameloid, p. 3352. In Suga, S. (ed.), Hard Tissue Mineralisation and Demineralisation. Springer-Verlag, Tokyo.CrossRefGoogle Scholar
Risk, M. J., Sayer, B. G., Tevesz, M. J. S., and Karr, C. G. 1996. Comparison of the organic matrix of fossil and recent bivalve shells. Lethaia, 29:197202.CrossRefGoogle Scholar
Sansom, I. J., Smith, M. P., and Smith, M. M. 1994. Dentine in conodonts. Nature, 368:591.CrossRefGoogle Scholar
Sansom, I. J., Smith, M. P., Armstrong, H. A., and Smith, M. M. 1992. Presence of the earliest vertebrate hard tissues in conodonts. Science, 256:13081311.CrossRefGoogle ScholarPubMed
Satchell, P. G., Shuler, C. F., and Diekwisch, T. G. H. 2000. True enamel coverings in teeth of the Australian lungfish Neoceratodus forsteri . Cell and Tissue Research, 299:2737.CrossRefGoogle ScholarPubMed
Savage, N. M. 1988. The use of sodium polytungstate for conodont separation. Journal of Micropalaeontology, 7:339340.CrossRefGoogle Scholar
Savage, N. M., Lindorfer, M. A., and MacMillan, D. A. 1990. Amino Acids from Ordovician Conodonts. Courier Forschungsreisen-Institut Senckenberghiana, 118:267275.Google Scholar
Schultze, H.-P. 1996. Conodont histology: An indicator of vertebrate relationship? Modern Geology, 20:275285.Google Scholar
Sommer-Knudsen, J., Clarke, A. E., and Bacic, A. 1997. Proline and hydroxyproline-rich gene products in the sexual tissues of flowers. Sexual Plant Reproduction, 10:253260.CrossRefGoogle Scholar
Sweet, W. C. 1988. The Conodonts: Morphology, Taxonomy, Paleoecology and Evolutionary History of a Long-Extinct Animal Phylum. Oxford University Press, New York, 211 p.Google Scholar
Szaniawski, H., and Bengtson, S. 1993. Origin of Euconodont elements. Journal of Palaeontology, 67:640654.CrossRefGoogle Scholar
Voet, D., and Voet, J. G. 1995. Biochemistry (second edition). John Wiley & Sons, New York, 1361 p.Google Scholar
Walliser, O. H. 1994. Architecture of the polygnathid conodont apparatus. Willi Zeigler Festschrift I, Courier Forschungs.-Institut Senckenberg., 168:3136.Google Scholar
Walton, D. 1998. Degradation of intracrystalline proteins and amino acids in fossil brachiopods. Organic Geochemistry, 28:389410.CrossRefGoogle Scholar
Walton, D., and Curry, G. B. 1994. Extraction, analysis and interpretation of intracrystalline amino acids from fossils. Lethaia, 27:179184.CrossRefGoogle Scholar
Wright, J. T., Hall, K., and Yamauchi, M. 1997. The protein composition of normal and developmentally defective enamel, p. 85106. In Chadwick, D. J. and Cardew, G. (eds.), Dental Enamel: Ciba Foundation Symposium 205. John Wiley and Sons, Chichester.Google Scholar