Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T04:16:53.742Z Has data issue: false hasContentIssue false

Analytical tools for quantifying the morphology of invertebrate trace fossils

Published online by Cambridge University Press:  14 July 2015

James R. Lehane
Affiliation:
University of Utah, Department of Geology and Geophysics, 115 South 1460 East, Room 383 FASB, Salt Lake City, UT 84112-0102, USA, and
A. A. Ekdale
Affiliation:
University of Utah, Department of Geology and Geophysics, 115 South 1460 East, Room 383 FASB, Salt Lake City, UT 84112-0102, USA, and

Abstract

The analysis of trace fossils usually is performed qualitatively, which makes comparing trace fossils from different units less objective than quantitative approaches. Quantifying the shape of trace fossils enables scientists to compare trace fossils described by different people with greater precision and accuracy. This paper describes several methods for quantifying invertebrate trace fossils, including morphology dependent methods (motility index, mesh size, topology, tortuosity, branching angle, and the number of cell sides) and morphology independent methods (fractal analysis, burrow area shape, and occupied space percentage (OSP)). These tools were performed on a select group of graphoglyptid trace fossils, highlighting the benefits and flaws of each analytical approach. Combined together, these methods allow for more objective comparisons between different trace fossils.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bąk, K., Rubinkiewicz, J., Garecka, M., Machaniec, E., and Dziubińska, B. 2001. Exotics-bearing layer in the Oligocene Flysch of the Krosno Beds in the Fore-Dukla Zone (Silesian Nappe, Outer Carpathians), Poland. Geologica Carpathica-Bratislava, 52:159171.Google Scholar
Bates, K. T., Manning, P. L., Vila, B., and Hodgetts, D. 2008. Three-dimensional modelling and analysis of dinosaur trackways. Palaeontology, 51:9991010.CrossRefGoogle Scholar
Baucon, A. 2010. Da Vinci's Paleodictyon: the fractal beauty of traces. Acta Geologica Polonica, 60:317.Google Scholar
Benhamou, S. 2004. How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229:209220.CrossRefGoogle ScholarPubMed
Braga, J. C., Martin, J. M., and Wood, J. L. 2001. Submarine lobes and feeder channels of redeposited, temperate carbonate and mixed siliciclastic-carbonate platform deposits (Vera Basin, Almería, southern Spain). Sedimentology, 48:99116.CrossRefGoogle Scholar
Bromley, R. G. 1996. Trace Fossils: Biology, Taphonomy and Applications, second edition. Chapman and Hall, New York.CrossRefGoogle Scholar
Cantor, G. 1883. Grundlagen einer allgemeinen Mannichfältigkeitslehre. Mathematische Annalen, 21:545591.CrossRefGoogle Scholar
Cantor, G. 1993. On the power of perfect sets of points, p. 1123. InEdgar, G. A.(ed.), Classics on Fractals. Addison-Wesley Publishing Company, Reading, MA.Google Scholar
Chertkov, V. Y. and Ravina, I. 1999. Tortuosity of crack networks in swelling clay soils. Soil Science Society of America Journal, 63:15231530.CrossRefGoogle Scholar
De Gibert, J. M., Jeong, K., and Martinell, J. 1999. Ethologic and ontogenic significance of the Pliocene trace fossil Sinusichnus sinuosus from the northwestern Mediterranean. Lethaia, 32:3140.CrossRefGoogle Scholar
Droser, M. L. and Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research, 56:558559.CrossRefGoogle Scholar
Droser, M. L. and Bottjer, D. J. 1987. Development of ichnofabric indices for strata deposited in high energy nearshore terrigenous clastic enviroment, p. 2934. InBottjer, D. J.(ed.), New Concepts in the Use of Biogenic Sedimentary Structures for Paleoenvironmental Interpretation. Volume and Guidebook 52, Society of Economic Paleontologists and Mineralogists, Pacific Section.Google Scholar
Ekdale, A. A., Muller, L. N., and Novak, M. T. 1984. Quantitative ichnology of modern pelagic deposits in the abyssal Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 45:189223.CrossRefGoogle Scholar
Ernst, G. and Zander, J. 1993. Stratigraphy, facies development, and trace fossils of the Upper Cretaceous of Southern Tanzania (Kilwa District), p. 259278. InAbbate, E., Sagri, M., and Sassi, F. P.(eds.), Geology and Mineral Resources of Somalia and Surrounding Regions.Volume 113. Istituto Agronomico per l'Oltremare, Florence, Italy.Google Scholar
Fuchs, T. 1895. Studien über Fucoiden und Hieroglyphen. Denkschriften der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, 62:369448.Google Scholar
Gong, Y. and Huang, D. 1997. Topologic configuration of a graphoglyptid and its functional morphologic analysis. Chinese Science Bulletin, 42:13941397.CrossRefGoogle Scholar
Janssen, P., Nielsen, M. Astin, Hirsch, I., Svensson, D., Gillberg, P.-G., and Hultin, L. 2008. A novel method to assess gastric accommodation and peristaltic motility in conscious rats. Scandinavian Journal of Gastroenterology, 43:3443.CrossRefGoogle ScholarPubMed
Katrak, G., Dittmann, S., and Seuront, L. 2008. Spatial variation in burrow morphology of the mud shore crab Helograpsus haswellianus (Brachyura, Grapsidae) in South Australian saltmarshes. Marine and Freshwater Research, 59:902911.CrossRefGoogle Scholar
Klecker, R., Bentham, P., Palmer-Koleman, S., and Jaminski, J. 2001. A recent petroleum-geologic evaluation of the Central Carpathian Depression, Southeastern Poland. Marine and Petroleum Geology, 18:6585.CrossRefGoogle Scholar
Knaust, D. 2012. Trace-fossil systematics, p. 79101. InKnaust, D. and Bromley, R. G.(eds.), Trace Fossils as Indicators of Sedimentary Environments, volume 64. Elsevier, New York.CrossRefGoogle Scholar
Koy, K. A. and Plotnick, R. E. 2010. Ichnofossil morphology as a response to resource distribution: insights from modern invertebrate foraging. Palaeogeography, Palaeoclimatology, Palaeoecology, 292:272281.CrossRefGoogle Scholar
Książkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica, 36:1208.Google Scholar
Le Comber, S. C., Spinks, A. C., Bennett, N. C., Jarvis, J. U. M., and Faulkes, C. G. 2002. Fractal dimension of African mole-rat burrows. Canadian Journal of Zoology, 80:436441.CrossRefGoogle Scholar
Lehane, J. R. and Ekdale, A. A. 2013. Fractal analysis of graphoglyptid trace fossils. Palaios, 28:2332.CrossRefGoogle Scholar
Leszczyński, S. 1991. Trace-fossil tiering in flysch sediments: examples from the Guipúzcoan flysch (Cretaceous–Paleogene), northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 88:167184.CrossRefGoogle Scholar
Magwood, J. P. A. and Ekdale, A. A. 1994. Computer-aided analysis of visually complex ichnofabrics in deep-sea sediments. Palaios, 9:102115.CrossRefGoogle Scholar
Mandelbrot, B. B. 1983. The Fractal Geometry of Nature. W. H. Freeman and Company, New York, 468p.Google Scholar
Menger, K. 1926. Allgemeine räume und cartesische räume. Proceedings of the Section of Sciences, Koniklijke Akademie van Wetenschappen te Amsterdam, 29:476482, 1125–1128.Google Scholar
Menger, K. 1993. General spaces and cartesian spaces, p. 103116. InEdgar, G. A.(ed.), Classics on Fractals. Addison-Wesley Publishing Company, Reading, MA.Google Scholar
Miller, M. F. and Smail, S. E. 1997. A semiquantitative field method for evaluating bioturbation on bedding planes. Palaios, 12:391396.CrossRefGoogle Scholar
Monaco, P. 2008. Taphonomic features of Paleodictyon and other graphoglyptid trace fossils in Oligo–Miocene thin-bedded turbidites, Northern Apennines, Italy. Palaios, 23:667682.CrossRefGoogle Scholar
Orr, P. J. 1999. Quantitative approaches to the resolution of taxonomic problems in invertebrate ichnology, p. 395431. InHarper, D. A. T.(ed.), Numerical Paleobiology. John Wiley and Sons, Ltd.Google Scholar
Pemberton, S. G. and Frey, R. W. 1984. Quantitative methods in ichnology: spatial distribution among populations. Lethaia, 17:3349.CrossRefGoogle Scholar
Piper, J. and Granum, E. 1987. Computing distance transformations in convex and non-convex domains. Pattern Recognition, 20:599615.CrossRefGoogle Scholar
Platt, B. F., Hasiotis, S. T., and Hirmas, D. R. 2010. Use of low-cost multistripe laser triangulation (MLT) scanning technology for three-dimensional, quantitative paleoichnological and neoichnological studies. Journal of Sedimentary Research, 80:590610.CrossRefGoogle Scholar
Plotnick, R. E. and Prestegaard, K. L. 1995. Fractals and multifractal models and methods in stratigraphy, p. 7396. InBarton, C. C. and La Pointe, P. R.(eds.), Fractals in Petroleum Geology and Earth Processes. Plenum Press, New York.CrossRefGoogle Scholar
Puche, H. and Su, N.-Y. 2001. Application of fractal analysis for tunnel systems of subterranean termites (Isoptera: Rhinotermitidae) under laboratory conditions. Environmental Entomology, 30:545549.CrossRefGoogle Scholar
Romañach, S. S. and Le Comber, S. C. 2004. Measures of pocket gopher (Thomomys bottae) burrow geometry: correlates of fractal dimension. Journal of Zoology, 262:399403.CrossRefGoogle Scholar
Rutovitz, D. 1968. Data structures for operations on digital images, p. 105133. InCheng, G. C., Ledley, R. S., Pollock, D. K., and Rosenfeld, A.(eds.), Pictorial Pattern Recognition. Thompson, Washington DC.Google Scholar
Seilacher, A. 1977. Pattern analysis of Paleodictyon and related trace fossils, p. 289334. InCrimes, T. P. and Harper, J. C.(eds.), Trace Fossils 2: Geological Journal, Special Issue 9.Google Scholar
Thulborn, R. A. 1990. Dinosaur Tracks. Chapman and Hall, London, 410p.CrossRefGoogle Scholar
Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apenines, Italy). Beringeria, 15:1115.Google Scholar
Uchman, A. 2003. Trends in diversity, frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeography, Palaeoclimatology, Palaeoecology, 192:123142.CrossRefGoogle Scholar
Uchman, A. and Wetzel, A. 2012. Deep-sea fans, p. 643671. InKnaust, D. and Bromley, R. G.(eds.), Trace Fossils as Indicators of Sedimentary Environments, volume 64. Elsevier, New York.CrossRefGoogle Scholar
Verbeek, P. W. and Verwer, B. J. H. 1990. Shading from shape, the eikonal equation solved by grey-weighted distance transform. Pattern Recognition Letters, 11:681690.CrossRefGoogle Scholar
Von Koch, H. 1904. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv för Mathematik, Astronomi och Fysik, 1:681702.Google Scholar
Von Koch, H. 1993. On a continuous curve without tangents constructible from elementary geometry, p. 2545. InEdgar, G. A.(ed.), Classics on fractals. Addison-Wesley Publishing Company, Reading, MA.Google Scholar
Wagle, N., Do, N. N., Yu, J., and Borke, J. L. 2005. Fractal analysis of the PDL-bone interface and implications for orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics, 127:655661.CrossRefGoogle ScholarPubMed
Wetzel, A. 2000. Giant Paleodictyon in Eocene flysch. Palaeogeography, Palaeoclimatology, Palaeoecology, 160:171178.CrossRefGoogle Scholar
Wetzel, A. and Uchman, A. 2001. Sequential colonization of muddy turbidites in the Eocene Beloveža Formation, Carpathians, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 168:171186.CrossRefGoogle Scholar
Wu, Y. S. 2008. Looking into tablets, characterization of pore structure in tablets using image analysis. Ph.D. Dissertation, Rijksuniversiteit Groningen, Amsterdam, 126p.Google Scholar
Wu, Y. S., Van Vliet, L. J., Frijlink, H. W., and Van Der Voort Maarschalk, K. 2006. The determination of relative path length as a measure for tortuosity in compacts using image analysis. European Journal of Pharmaceutical Sciences, 28:433440.CrossRefGoogle ScholarPubMed