Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T11:05:27.622Z Has data issue: false hasContentIssue false

Anourosoricini (Mammalia: Soricidae) from the Mediterranean region: A pre-Quaternary example of recurrent climate-controlled north-south range shifting

Published online by Cambridge University Press:  20 May 2016

Jan A. van Dam*
Affiliation:
Faculty of Earth Sciences, Utrecht University, PO 80021, 3508 TA, Utrecht, the Netherlands,

Abstract

Anourosoricini are among the most specialized shrews in terms of dentition and mandibular structure, showing carnivore-like specializations such as carnassial function and reduction and disappearance of third molars. The tribe is documented from the Upper Neogene of Europe, Asia, and North America, and from the Quaternary of Asia, where a single relict species has survived until the present day.

The Mediterranean area functioned as a sink area for the Anourosoricini. Their source area was a northern, more humid, and more forested zone extending from France to the Ukraine. Southward-directed range shifts resulted in the intermittent presence of the tribe in the Mediterranean region during more humid intervals. The dense Upper Miocene micromammal succession from the Teruel and Calatayud-Daroca basins, central Spain, shows that Crusafontina endemica was present in the area around 10.2 and between 9.7–9.5 Ma. It is succeeded by the dentally more gracile C. fastigata n. sp. at 9.0–8.8 Ma. The larger and more robust C. vandeweerdi n. sp., a form sharing features with Paranourosorex, peaks at ∼7 Ma. The last major acme occurs around 6.3 Ma and is represented by Amblycoptus jessiae. The final disappearance of the tribe from the area takes place at 5–4.5 Ma.

The Anourosoricini provide a well-documented pre-Quaternary example of recurrent climate-controlled north-south range expansion. The proposed paleobiogeographic model presumes that southward mammal migrations are driven by changes in the precipitation regime rather than the temperature regime of the Mediterranean region. A comparison to paleoecological interpretations based on the independent rodent record shows that Anourosoricini avoid areas with low levels of precipitation and low soil humidity. A mean annual precipitation minimum of 600 mm/yr is about the threshold value for populations of the tribe to survive locally.

The available evidence suggests eastward dispersal of a primitive Crusafontina species from Eurasia into North America at about the same time when Hipparion crossed the Bering Strait in a westward direction.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul Aziz, H., van Dam, J. A., Hilgen, F., and Krijgsman, W. 2004. Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters, 222(1):243258.Google Scholar
Adrover, R., Alcalá, L., Mein, P., Moissenet, E., and Paricio, J. 1982. Micromamíferos vallesienses del yacimiento La Salle en las Arcillas rojas de Teruel. Acta Geologica Hispanica, 17(1–2):8993.Google Scholar
Agustí, J., and Gibert, J. 1982. Roedores e insectivoros, mammalia del Mioceno Superior de Can Jofresa y Can Perellada, Vallès-Penedès, Cataluna. Paleontologia y Evolució, 17:2941.Google Scholar
Agustí, J., and Moyà-Solà, S. 1992. Mammalian dispersal events in Spanish Pleistocene. Courier Forschungsinstitut Senckenberg, 153:6977.Google Scholar
Agustí, J., Cabrera, L., Garcés, M., and Parés, J. M. 1997. The Vallesian mammal succession in the Vallès-Penedès Basin (northeast Spain); paleomagnetic calibration and correlation with global events. Palaeogeography, Palaeoclimatology, Palaeoecology, 133(3–4):149180.Google Scholar
Agustí, J., Cabrera, L., Garcés, M., Krijgsman, W., Oms, O., and Parés, J. M. 2001. A calibrated mammal scale for the Neogene of western Europe; state of the art. Earth-Science Reviews, 52(4):247260.Google Scholar
Alonso-Zarza, A. M., and Calvo, J. P. 2000. Palustrine sedimentation in an episodically subsiding basin: the Miocene of the northern Teruel Graben. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1–2): 121.CrossRefGoogle Scholar
Alroy, J. 2000. North American Mammalian Paleofaunal Database, http://www.nceas.ucsb.edu/∼alroy/nampfd.html.Google Scholar
Anderson, J. 1879. Anatomical and zoological researches: comprising an account of the zoological results of the two expeditions to western Yunnan in 1868 and 1875. Volume 1. N.p., London: 357564.Google Scholar
Bachmayer, F., and Wilson, R. W. 1970. Small mammals (Insectivora, Chiroptera, Lagomorpha, Rodentia) from the Kohfidisch fissures of Burgenland, Austria. Annalen des Naturhistorischen Museums in Wien, 74:533583.Google Scholar
Bachmayer, F., and Wilson, R. W. 1978. A second contribution to the small mammal fauna of Kohfidisch, Austria. Annalen des Naturhistorischen Museums in Wien, 81:129161.Google Scholar
Bachmayer, F., and Wilson, R. W. 1984. Die Kleinsäugerfauna von Götzendorf, Niederösterreich. Sitzungsberichte-Österreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Abteiling I, 193:303319.Google Scholar
Bown, T. M. 1980. The fossil insectivora of Lemoyne Quarry (Ash Hollow Formation, Hemphillian), Keith County, Nebraska. Transactions of the Nebraska Academy of Sciences, 8:99121.Google Scholar
Catzeflis, F. 1984. Systématique biochimique, taxonomie et phylogénie des musaraignes d'Europe (Soricidae, Mammalia). Ph.D. dissertation, University of Lausanne, 164 p.Google Scholar
Chaline, J., Brunet-Lecomte, P., and Campy, M. 1995. The last glacial/interglacial record of rodent remains from the Gigny karst sequence in the French Jura used for palaeoclimatic and palaeoecological reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 117(3–4):229252.Google Scholar
Crochet, J.-Y., and Green, M. 1982. Contribution a l'étude des micromammifères du gisement Miocène supérieur de Montredon (Hérault), 3. Les insectivores. Palaeovertebrata, 12(3): 119131.Google Scholar
Daams, R., van der Meulen, A. J., Pelaez-Campomanes, P., and Alvarez-Sierra, M. A. 1999. Trends in rodent assemblages from the Aragonian (early-middle Miocene) of the Calatayud-Darova Basin, Aragon, p. 127139. In Agustí, J., Rook, L., and Andrews, P. (eds.), Evolution of Neogene Terrestrial Ecosystems in Europe. Cambridge University Press, Cambridge.Google Scholar
Dannelid, E. 1998. Dental adaptation in shrews, p. 157174. In Wójcik, J. M. and Wolsan, M. (eds.), Evolution of Shrews. Mammal Research Institute, Polish Academy of Science, Białowieża.Google Scholar
de Bruijn, H. 1976. Vallesian and Turolian rodents from Biota, Attica and Rhodes (Greece). Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen, B, 79:361384.Google Scholar
de Bruijn, H. 1989. Smaller mammals from the Upper Miocene and Lower Pliocene of the Strimon Basin, Greece, Pt. 1, Rodentia and Lagomorpha. Bollettino della Società Paleontologica Italiana, 28:189195.Google Scholar
Doukas, C. S. 1989. Smaller mammals from the upper Miocene and lower Pliocene of the Strimon Basin, Greece, Pt. II, Insectivora. Bollettino della Società Paleontologica Italiana, 28:213216.Google Scholar
Doukas, C. S., Ostende, L. W. van den Hoek, Theocharopoulos, C. D., and Reumer, J. W. F. 1995. Insectivora, p. 4364. In Schmidt-Kittler, N. (ed.), The Vertebrate Locality Maramena (Macedonia, Greece) at the Turolian-Ruscinian Boundary (Neogene). Münchner Geowissenschaftlichen Abhandlungen, Reihe A, 28. Friedrich Pfeil, München.Google Scholar
Engesser, B. 1972. Die obermiozäne Säugetier Fauna von Anwil (Baselland). Tätigkeitsberichte der Naturforschenden Gesellschaft Baselland, 28:37363.Google Scholar
Engesser, B. 1980. Insectivora und Chiroptera (Mammalia) aus dem Neogen der Türkei. Paläontologische Abhandlungen, 102:47149.Google Scholar
Fauquette, S., Suc, J.-P., Guiot, J., Diniz, F., Feddi, N., Zheng, Z., Bessais, E., and Drivaliari, A. 1999. Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1–2):1536.Google Scholar
Franzen, J. L., and Storch, G. 1999. Late Miocene mammals from central Europe, p. 165190. In Agustí, J., Rook, L., and Andrews, P. (eds.), Evolution of Neogene Terrestrial Ecosystems in Europe. Cambridge University Press, Cambridge.Google Scholar
Franzen, J. L., Fejfar, O., and Storch, G. 2003. First micromammals (Mammalia, Soricomorpha) from the Vallesian (Miocene) of Eppelsheim, Rheinhessen (Germany). Senckenbergiana lethaea, 83(1–2):95102.Google Scholar
Garcés, M., Agustí, J., Cabrera, L., and Parés, J. M. 1996. Magnetostratigraphy of the Vallesian (late Miocene) in the Vallès-Penedès Basin (northeast Spain). Earth and Planetary Science Letters, 142(3–4):381396.Google Scholar
Garcés, M., Cabrera, L., Agustí, J., and Parés, J. 1997. Old World first appearance datum of “Hipparion” horses: late Miocene large mammal dispersal and global events. Geology, 25:1922.Google Scholar
Garcés, M., Krijgsman, W., van Dam, J., Calvo, J. P., Alcalá, L., and Alonso-Zarza, A. M. 1999. Late Miocene alluvial sediments from the Teruel area: magnetostratigraphy, magnetic susceptibility, and facies organisation. Acta Geológica Hispanica, 32:171184.Google Scholar
Gibert, J. 1974. Étude des Insectivores du Miocène de Vallès-Penedès, Calatayud-Daroca et Rubielos de Mora. Ph. D. dissertation, Instituto provincial de Paleontología, Sabadell, 224 p.Google Scholar
Gibert, J. 1975. New insectivores from the Miocene of Spain; I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, series B, 78:108133.Google Scholar
Gibert, J. 1976. Nuevos datos sobre Crusafontina endemica. Acta Geologica Hispanica, 11(2):3334.Google Scholar
Gray, J. E. 1821. On the natural arrangement of vertebrose animals. London Medical Repository, 15:296310.Google Scholar
Gureev, A. A. 1971. Zemlerojki (Soricidae) fauni mira. Akademiya Nauk SSSR. Nauka, Moscow, 253 p. (In Russian)Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Deszendenz-Theorie, II, Allgemeine Entwicklungsgeschichte der Organismen. Kritische Grundzüge der mechanischen Wissenschaft von den entstchonden Formen der Organismen, N. p., 462 p.Google Scholar
Haq, B. U., Hardebol, J., and Vail, P. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Special Publication, 42:71108.Google Scholar
Hodell, D. A., Benson, R. H., Kent, D. V., Boersma, A., and Bied, K. Rakicel 1994. Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Salé Briqueterie (northwestern Morocco): A high-resolution chronology for the Messinian stage. Paleoceanography, 9:835855.Google Scholar
Jánossy, D. 1972. Middle Pliocene microvertebrate fauna from the Osztramos Loc. 1 (Northern Hungary). Annales Historico-naturales Mesei Nationalis Hunagarici, 64:2752.Google Scholar
Kormos, T. 1926. Amblycoptus oligodon n. g. n. sp. Eine neue Spitzmaus aus dem ungarischen Pliozän. Annales Musei Nationalis Hungarici, 24:352391.Google Scholar
Kretzoi, M. 1984. A Sümeg-gerinci fauna és faunazakasz. Geologica Hungarica (series geologica), 20:214222.Google Scholar
Krijgsman, W., and Kent, D. V.In press. Non-uniform occurrence of short-term polarity fluctuations in the geomagnetic field? New results from Middle to Late Miocene sediments of the North Atlantic (DSDP Site 608). In Channell, J. E. T., Kent, D. V., Lowrie, W., and Meert, J. (eds.), Timescales of the Internal Geomagnetic Field, AGU Monograph.Google Scholar
Krijgsman, W., Garcés, M., Langereis, C. G., Daams, R., van Dam, J., van der Meulen, A. J., Agustí, J., and Cabrera, L. 1996. A new chronology for the middle to late Miocene continental record in Spain. Earth and Planetary Science Letters, 142(3–4):367380.CrossRefGoogle Scholar
Lourens, L. J., Hilgen, F. J., Laskar, J., Shackleton, N. J., and Wilson, D.In press.The Neogene Period. In Gradstein, F. M., Ogg, J. G., Smith, A. G. (eds.), A Geological Time Scale 2004. Cambridge University Press, Cambridge.Google Scholar
Lungu, A. N. 1981. La faune à Hipparion du Sarmatien moyen de Moldavie (Insectivora, lagomorpha, Rodentia). Shtiintsa Kisheniv MSSR, SSSR, p. 1140. (In Russian)Google Scholar
Mai, D. H. 1995. Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Jena, 691 p.Google Scholar
Markova, A. K. 1992. Influence of paleoclimatic changes in the Middle and Late Pleistocene on the composition of small mammal faunas: data from Eastern Europe. Courier Forschungsinstitut Senckenberg, 153:93100.Google Scholar
Matthews, M. D., and Perlmutter, M. A. 1994. Global cyclostratigraphy; an application to the Eocene Green River basin, p. 459481. In de Boer, P. L. and Smith, D. G. (eds.), Orbital Forcing and Cyclic Sequences. Special Publication of the International Association of Sedimentologists, 19.Google Scholar
Mayr, H., and Fahlbusch, V. 1975. Eine unterpliozäne Kleinsäugerfauna aus der Oberen Süsswasser-molasse Bayerns. Mittelungen der Bayerische Staatssamlung. Paläontologie und historische Geologie, 15:91111.Google Scholar
Mein, P. 1990. Updating of MN zones, p. 7390. In Lindsay, E. H., Fahlbusch, V., and Mein, P. (eds.), European Neogene Mammal Chronology. Plenum Press, New York.Google Scholar
Mein, P. 1999. The small mammal Vallesian and Turolian succession of France, p. 140164. In Agustí, J., Rook, L., and Andrews, P. (eds.), Evolution of Neogene Terrestrial Ecosystems in Europe. Cambridge University Press, Cambridge.Google Scholar
Mein, P., Moissenet, E., and Adrover, R. 1990. Biostratigraphie du Néogene supérieur du bassin de Teruel. Paleontologia i Evolucio, 23:121139.Google Scholar
Mészáros, L. G. 1997. Kordosia, a new genus for some late Miocene Amblycoptini shrews (Mammalia, Insectivora). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2:6578.Google Scholar
Mészáros, L. G. 1998a. Crusafontina (Mammalia, Soricidae) from Late Miocene localities in Hungary. Senckenbergiana Lethaea, 77:145159.Google Scholar
Mészáros, L. G. 1998b. Late Miocene Soricidae (Mammalia) fauna from Tardosbánya (Western Hungary). Hantkeniana, 2:103125.Google Scholar
Mészáros, L. G. 1999a. An exceptionally rich Soricidae (Mammalia) fauna from the upper Miocene localities of Polgárdi (Hungary). Annales Universitatis Scientiarum Budapestinensis (sectio geologica), 32:534.Google Scholar
Mészáros, L. G. 1999b. Some insectivore (Mammalia) remains fom the Late Miocene locality of Alsótekles (Hungary). Annales Universitatis Scientiarum Budapestinensis (sectio geologica), 32:3547.Google Scholar
Mészáros, L. G. 2000. New results for the Late Miocene Soricidae stratigraphy in the Pannonian Basin. Newsletters on Statigraphy, 38:111.Google Scholar
Meulenkamp, J. E., and Sissingh, W. 2003. Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone. Palaeogeography, Palaeoclimatology, Palaeoecology, 196(1–2):209228.Google Scholar
Miller, K. G., Wright, J. D., and Fairbanks, R. G. 1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion. Journal of Geophysical Research, 96:6,8296,848.Google Scholar
Milne-Edwards, M. A. 1870. Note sur quelques mammifères du Thibet oriental. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 70:341344.Google Scholar
Nadachowski, A. 2001. New important Neogene and Pleistocene mammal assemblages from Poland. Bollettino della Società Paleontologica Italiana, 40:243248.Google Scholar
Nesin, V. A., and Nadachowski, A. 2001. Late Miocene and Pliocene small mammal faunas (Insectivora, Lagomorpha, Rodentia) of Southeastern Europe. Acta Zoologica Cracoviensa, 44(2):107135.Google Scholar
Nowak, R. M. 1991. Walker's Mammals of the World. Johns Hopkins University Press, Baltimore, 1,629 p.Google Scholar
Opdyke, N., Mein, P., Lindsay, E., Perez-Gonzales, A., Moissenet, E., and Norton, V. L. 1997. Continental deposits, magnetostratigraphy and vertebrate paleontology, late Neogene of Eastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 133(3–4):129148.CrossRefGoogle Scholar
Pevzner, M. A., and Vangenheim, E. A. 1993. Magnetochronological age assignments of Middle and Late Sarmatian Mammalian localities of the Eastern Parathethys. Newsletters on Stratigraphy, 29:6375.Google Scholar
Pevzner, M. A., Vangenheim, E. A., Vislobokova, I. A., Sotnivova, M. V., and Tesakov, A. S. 1996. Ruscinian of the territory of the former Soviet Union. Newsletters on Stratigraphy, 33:7797.CrossRefGoogle Scholar
Qiu, Z., Li, C., and Hu, S. 1984. Late Pleistocene micromammal fauna of Sanjiacun, Kunming. Vertebrata Palasiatica, 22:281293. (In Chinese)Google Scholar
Rabeder, G. 1970. Die Wirbeltierfauna aus dem Alt-Pliozaen (O-Pannon) vom Eichkogel bei Moedling (NOe.); I, Allgemeines; II, Insectivora. Annalen des Naturhistorischen Museums in Wien, 74:589595.Google Scholar
Repenning, C. A. 1967. Subfamilies and genera of the Soricidae. U.S. Geological Survey Professional Paper, 565:174.Google Scholar
Reumer, J. W. F. 1984. Ruscinian and early Pleistocene Soricidae (Insectivora, Mammalia) from Tegelen (The Netherlands) and Hungary. Scripta Geologica, 73:1173.Google Scholar
Reumer, J. W. F. 1985. The paleoecology of Soricidae (Insectivora, Mammalia) and its application to the debate on the Plio-Pleistocene boundary. Revue de Paléobiologie, 4(2):211214.Google Scholar
Reumer, J. W. F. 1989. Speciation and evolution in the Soricidae (Mammalia: Insectivora) in relation with the paleoclimate. Revue Suisse de Zoologie, 96:8190.Google Scholar
Rzebik-Kowalska, K. B. 1975. The Pliocene and Pleistocene insectivores (Mammalia) of Poland; II, Soricidae; Paranourosorex and Amblycoptus. Acta Zoologica Cracoviensa, 20(6):167184.Google Scholar
Rzebik-Kowalska, K. B. 1994a. Insectivora (Mammalia) from the Miocene of Bełchatóv in Poland. II. Soricidae Fischer von Waldheim 1817. Acta Zoologica Cracoviensa, 36:267274.Google Scholar
Rzebik-Kowalska, K. B. 1994b. Pliocene and Quaternary Insectivora (Mammalia) of Poland. Acta Zoologica Cracoviensa, 37:77136.Google Scholar
Sesé, C. 1994. Paleoclimatical interpretation of the Quaternary small mammals of Spain. Geobios, 27:753767.Google Scholar
Shikama, T., and Hasegawa, Y. 1958. On a new Anourosorex from Ryugasi formation (Fissure Deposits) in Japan. Science Reports of the Yokohama National University, 2(7):102112.Google Scholar
Solounias, N., Plavcan, J. M., Quade, J., and Witmer, L. 1999. The paleoecology of the Pikermiam Biome and the savanna myth, p. 436453. In Agustí, J., Rook, L., and Andrews, P. (eds.), Evolution of Neogene Terrestrial Ecosystems in Europe. Cambridge University Press, Cambridge.Google Scholar
Storch, G. 1978. Die turolische Wirbeltierfauna von Dorn-Dürkheim, Rheinhessen (SW-Deutschland), 2, Mammalia: Insectivora. Senckenbergiana Lethaea, 58:421449.Google Scholar
Storch, G. 1992. Local differentiation of faunal change at the Pleistocene-Holocene boundary. Courier Forschungsinstitut Senckenberg, 153:135142.Google Scholar
Storch, G. 1995. The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China, 11, Soricidae (Insectivora). Senckenbergiana lethaea, 75:221251.Google Scholar
Storch, G., and Qiu, Z. 1991. Insectivores (Mammalia: Erinaceidae, Soricidae, Talpidae) from the Lufeng hominoid locality, Late Miocene of China. Geobios, 24:601621.Google Scholar
Storch, G., and Zazhigin, V. S. 1996. Taxonomy and phylogeny of the Paranourosorex lineage, Neogene of Eurasia (Mammalia; Soricidae; Anourosoricini). Palaeontologische Zeitschrift, 70:257268.Google Scholar
Storch, G., Qiu, Z., and Zazhigin, V. S. 1998. Fossil history of shrews in Asia, p. 93120. In Wójcik, J. M. and Wolsan, M. (eds.), Evolution of Shrews. Mammal Research Institute, Polish Academy of Science, Białowieża.Google Scholar
Sulimsky, A., Szynkiewicz, A., and Voloszyn, B. 1979. The Middle Pleistocene micromammals from central Poland. Acta Paleontologica Polonica, 24:377403.Google Scholar
Topachevski, V. A., Nesin, V. A., Rekovets, L. I., Topachevski, I. V., and Pashkov, A. V. 1988a. A new location of small mammalian remains in Pliocene of the northern Azov Sea area. Dopovidi Akademii Nauk Ukrainskoi SSR, seria B, 1988 (4):1821.Google Scholar
Topachevski, V. A., Chepaliga, A. L., Nesin, V. A., Rekovets, L. I., and Topachevski, I. V. 1988b. Micromammal fauna (Insectivora, Lagomorpha, Rodentia) of the Pont lectotype. Dopovidi Akademii Nauk Ukrainskoi SSR, seria B, 1988 (11):1922.Google Scholar
Turco, E., Hilgen, F. J., Lourens, L. J., Shackleton, N. J., and Zachariasse, W. J. 2001. Punctuated evolution of global climate cooling during the late Middle to early Late Miocene: high-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography, 16:405422.CrossRefGoogle Scholar
Utescher, T., Mosbrugger, V., and Ashraf, A. R. 2000. Climate evolution in northwest Germany over the last 25 million years. Palaios, 15:430449.Google Scholar
van Dam, J. A. 1997. The small mammals from the upper Miocene of the Teruel-Alfambra region (Spain): paleobiology and paleoclimatic reconstructions. Geologica Ultraiectina, 156:1204.Google Scholar
van Dam, J. A. 2001. Paleoprecipitation predictions using small mammal dietary and locomotory adaptations: new methods with an application to the Messinian. Abstracts EEDEN Plenary Workshop on Late Miocene to early Pliocene Environments and Ecosystems (Sabadell), 2021.Google Scholar
van Dam, J. A. 2003. The Late Miocene aridification of Europe: a diachronic process. Abstracts EEDEN–Environments and Ecosystem Dynamics of the Eurasian Neogene, Birth of the New World, Stará Lesná, 47:48.Google Scholar
van Dam, J. A., and Weltje, G. J. 1999. Reconstruction of the late Miocene climate of Spain using rodent palaeocommunity successions; an application of end-member modelling. Palaeogeography, Palaeoclimatology, Palaeoecology, 151(4):267305.Google Scholar
van Dam, J. A., Alcalá, L., Zarza, A. M. Alonso, Calvo, J. P., Garcés, M., and Krijgsman, W. 2001a. The Upper Miocene mammal record from the Teruel-Alfambra region (Spain): the MN system and continental Stage/Age concepts discussed. Journal of Vertebrate Paleontology, 21(2):367385.Google Scholar
van Dam, J. A., Andrews, P., Badgley, C., Damuth, J., Fortelius, M., Hadley, E. A., Hixson, S., Janis, C., Madden, R. H., Reed, K., Smith, F. A., Theodor, J., van Valkenburgh, B., and Werdelin, L. 2001b. Within-habitat mammal diversity and productivity and their recent patterns across latitude. Abstracts of Papers, Society of Vertebrate Paleontology Annual Congress, Journal of Vertebrate Paleontology, 21(supplement to 3):43A.Google Scholar
van Kolfschoten, M. 1992. Aspects of the migration of mammals to Northwestern Europe during the Pleistocene, in particular the reimmigration of Arvicola terrestris. Courier Forschungsinstitut Senckenberg, 153:213220.Google Scholar
Vassiliadou, K. V., Koufos, G. D., and Syrides, G. E. 2001. A new micromammalian locality from the Miocene/Pliocene boundary of Chalkidiki pensinsula, Macedonia, Greece. Abstracts Conference, Distribution and migration of Tertiary mammals in Eurasia (Utrecht), 4849.Google Scholar
von Koenigswald, W., and Heinrich, W.-D. 1999. Mittelpleistozäne Säugetierfaunan aus Mitteleuropa—Der Versuch einer biostratigrafischen Zuordnung. Kaupia, Darmstädter Beiträge zur Naturgeschichte, 9:53112.Google Scholar
Voorhies, M. R. 1990. Vertebrate biostatigraphy of the Ogallala Group in Nebraska, p. 115151. In Gustavson, T. C. (ed.), Geologic Framework and Regional Hydrology; Upper Cenozoic Blackwater Draw and Ogallala Formations, Great Plains, Symposium on Geology and Geohydrology of the Tertiary Ogallala Formation (Group) and Quaternary Blackwater Draw Formation. Texas Tech University, Lubbock.Google Scholar
Wolfe, J. A. 1985. Distribution of major vegetational types during the Tertiary. Geophysical Monographs, 32:357–75.Google Scholar
Wright, J. D., and Miller, K. G. 1992. Miocene stable isotope stratigraphy, Site 747, Kerguelen Plateau. Proceedings of the Ocean Drilling Program, Scientific Results, 120:855866.Google Scholar
Ye, X., Fang, Q., Hou, L., Zheng, S., Zhang, L., Gu, Y., Huang, W., Zhong, Z., Yan, X., Li, X., Cao, Y., Ji, H., and Yang, D. 1991. Insectivora Bowdich, 1921, p. 2846. In Huang, W. and Fang, Q. (eds.), Wushan Hominid Site. Academia Sinica, Beijing. (In Chinese)Google Scholar
Young, C. C., and Liu, P. T. 1951. On the mammalian fauna at Koloshan near Chunking, Szechuan. Bulletin of the Geological Society of China, 30:4390.Google Scholar
Zazhigin, V. S. 1989. Upper Pliocene reference sections and their biostratigraphic characteristics based on mammals, p. 1024. In Logachev, N. A. (ed.), The Upper Cenozoic of Mongolia; Stratigraphy and Paleogeography. Trudy—Sovmestnaya Sovetsko-Mongol'skaya Nauchno-Issledovatel'skaya Geologicheskaya Ekspeditsiya, 47. (In Russian)Google Scholar
Zheng, S. 1985. Remains of the genus Anourosorex (Insectivora, Mammalia) from Pleistocene of Guizhou District. Vertebrata Palasiatica, 21:230240. (In Chinese)Google Scholar
Ziegler, R., and Mészáros, L. G.In press. The Soricidae (Mammalia, Insectivora) of Rudabánya. In Bernor, R. and Kordos, L. (eds.), The Late Miocene Hominoid Locality of Rudabánya, Hungary. Columbia University Press, New York.Google Scholar