Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T04:16:56.391Z Has data issue: false hasContentIssue false

Craniodental morphology and diet of Leptarctus oregonensis (Mammalia, Carnivora, Mustelidae) from the Mascall Formation (Miocene) of central Oregon

Published online by Cambridge University Press:  18 September 2017

Jonathan J. Calede*
Affiliation:
Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, Washington 98195-1800, USA 〈caledj@uw.edu〉
Winifred A. Kehl
Affiliation:
Department of Museology, University of Washington, Box 359485, Seattle, WA 98195-9485, USA 〈kehlw@uw.edu〉
Edward B. Davis
Affiliation:
Department of Geological Sciences and Museum of Natural and Cultural History, University of Oregon, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA 〈edavis@uoregon.edu〉
*
*Current address: Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Marion, 1461 Mount Vernon Avenue, Marion, Ohio 43302-5628, USA 〈calede.1@osu.edu

Abstract

The Leptarctinae are an enigmatic subfamily of mustelids present in North America and Eurasia during the Miocene (Arikareean to Hemphillian North American Land Mammal Ages). Their diet and ecology have been particularly controversial. Some workers have suggested they were similar to koalas, whereas others suggested they were crushing omnivores analogous to raccoons. Leptarctus oregonensis Stock, 1930, a poorly known leptarctine from the early Barstovian, is represented by fragmented cranial elements and isolated teeth from the Mascall Formation of Oregon, and some fairly complete but undescribed material from the Olcott Formation of western Nebraska. Herein, we describe the first well-preserved skull of L. oregonensis from the type formation. Based on this new specimen, we confirm that L. oregonensis is a distinct species from L. primus Leidy, 1856 and L. ancipidens White, 1941 that is characterized by a distinct morphology of its tympanic projections and first upper molars. We are also able to describe intraspecific variation within L. oregonensis coinciding with the geographic distribution of the specimens (Oregon and Nebraska). The most variable characters are concentrated in the morphology of the frontals and the upper fourth premolar. Additional specimens will be needed to settle the debate over sexual dimorphism in this species, but this new specimen suggests that Leptarctus oregonensis, despite being one of the smallest members of the Leptarctinae, was an animal-dominated omnivore with considerable crushing ability.

Type
Articles
Copyright
Copyright © 2017, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antón, M., Salesa, M.J., Pastor, J.F., Sánchez, I.M., Fraile, S., and Morales, J., 2004, Implications of the mastoid anatomy of larger extant felids for the evolution and predatory behavior of sabretoothed cats (Mammalia, Carnivora, Felidae): Zoological Journal of the Linnean Society, v. 140, p. 207221.Google Scholar
Baskin, J.A., 1998, Mustelidae, in Janis, C.M., Scott, K.M., and Jacobs, L.L., eds., Evolution of Tertiary mammals of North America. Volume 1: Cambridge, Cambridge University Press, p. 152173.Google Scholar
Baskin, J.A., 2005, Carnivora from the late Miocene Love bone bed of Florida: Bulletin of the Florida Museum of Natural History, v. 45, p. 419440.Google Scholar
Bever, G.S., and Zakrzewski, R.J., 2009, A new species of the Miocene leptarctine Leptarctus (Carnivora: Mustelidae) from the early Hemphillian of Kansas, in Albright, L.B., III., ed., Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne: Museum of Northern Arizona Bulletin, v. 65, p. 465481.Google Scholar
Bonesi, L., Chanin, P., and MacDonald, D.W., 2004, Competition between Eurasian otter Lutra lutra and American mink Mustela vison probed by niche shift: Oikos, v. 106, p. 1926.Google Scholar
Bowdich, T.E., 1821, An Analysis of the Natural Classifications of Mammalia for the Use of Students and Travelers: Paris, John Smith, 115 p.Google Scholar
Carbone, C., Mace, G.C., Roberts, S.C., and Macdonald, D.W., 1999, Energetic constraints on the diet of terrestrial carnivores: Nature, v. 402, p. 286288.Google Scholar
Cork, S.J., Hume, I.D., and Dawson, T.J., 1983, Digestion and metabolism of a natural foliar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cineveus): Journal of Comparative Physiology B: Biochemical, Systematic, and Environmental Physiology, v. 153, p. 181190.Google Scholar
Cuvier, F.G., 1825, in Saint-Hilaire, E.G., and Cuvier, F.G., Histoire Naturelle des Mammifères: Paris, Muséum d’Histoire Naturelle, pt. 3, v. 5, 55 p.Google Scholar
Davis, D.D., 1964, The giant panda: a morphological study of evolutionary mechanisms: Fieldiana Zoology Memoirs, v. 3, p. 1339.Google Scholar
Desmarest, A.G., 1820, Mammalogie ou description des espèces de mammifères: Encyclopédie méthodique des mammifères: Paris, Veuve Agasse, 276 p.Google Scholar
Dobson, G.E., 1878, Catalogue of the Chiroptera in the collection of the British Museum: London, British Museum (Natural History), 567 p.Google Scholar
Downs, T., 1956, The Mascall fauna from the Miocene of Oregon: University of California Publications in Geological Sciences, v. 31, p. 199354.Google Scholar
Dumont, M., Wall, C.E., Botton-Divet, L., Goswami, A., Peigné, S., and Fabre, A.C., 2016, Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans?: Biological Journal of the Linnean Society, v. 117, p. 858878.Google Scholar
Endo, H., Taru, H., Yamamoto, M., Arishima, K., and Sasaki, M., 2003, Comparative morphology of the muscles of mastication in the giant panda and the Asiatic black bear: Annals of Anatomy, v. 185, p. 287292.Google Scholar
Figueirido, B., MacLeod, N., Krieger, J., De Renzi, M., Pérez-Claros, J. A., and Palmqvist, P., 2011, Constraints and adaptation in the evolution of carnivoran skull shape: Paleobiology, v. 37, p. 490518.CrossRefGoogle Scholar
Fischer, G., 1817, Adversaria zoologica: Mémoires de la Société Impériale des Naturalistes de Moscou, v. 5, p. 357472.Google Scholar
Flynn, J.J., Finarelli, J.A., Zehr, S., Hsu, J., and Nedbal, M., 2005, Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships: Systematic Biology, v. 54, p. 317337.Google Scholar
Friscia, A.R., Van Valkenburgh, B., and Biknevicius, A.R., 2006, An ecomorphological analysis of extant small carnivorans: Journal of Zoology, v. 272, p. 82100.Google Scholar
Fritzell, E.K., and Haroldson, K.J., 1982, Urocyon cinereoargenteus : Mammalian species, v. 189, p. 18.Google Scholar
Gazin, C.L., 1936, A new mustelid carnivore from the Neogene beds of northwestern Nebraska: Journal of the Washington Academy of Sciences, v. 26, p. 199207.Google Scholar
Goldfuss, G.A., 1817, Lipurus cinereus, Schreber’s die Saugethiere, in Abbildungen nach der Natur, mit Beschreibungan: Fortgesetzt von A. Goldfuss.Google Scholar
Gompper, M.E., and Decker, D.M., 1998, Nasua nasua : Mammalian Species, v. 580, p. 19.Google Scholar
Goswami, A., Milne, N., and Wroe, S., 2011, Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals: Proceedings of the Royal Society B, v. 278, p. 18311839.CrossRefGoogle ScholarPubMed
Hall, E.R., 1926, The muscular anatomy of three mustelid mammals, Mephitis, Spilogale, and Martes : University of California Publications in Zoology, v. 30, p. 738.Google Scholar
Harrington, L.A., and Macdonald, D.W., 2008, Spatial and temporal relationships between invasive American mink and native European polecats in the southern United Kingdom: Journal of Mammalogy, v. 89, p. 9911000.Google Scholar
Hidaka, C., Matsumoto, M., Hiji, H., Ohsako, S., and Nishinakagawa, H., 1998, Morphology and morphometry of skulls of Raccoon Dogs, Nyctereutes procyonoides, and badgers, Meles meles : The Journal of Veterinary Medical Science, v. 60, p. 161167.Google Scholar
Hunter, J. P., and Jernvall, J., 1995, The hypocone as a key innovation in mammalian evolution: Proceedings of the National Academy of Sciences, v. 92, p. 1071810722.Google Scholar
Hwang, Y. T., and Larivière, S., 2003, Mydaus javanensis : Mammalian Species, v. 723, p. 13.CrossRefGoogle Scholar
Kinlaw, A., 1995, Spilogale putorius : Mammalian Species, v. 511, p. 17.Google Scholar
Koler-Matznick, J., Lehr Brisbin, I. Jr., Feinstein, M., and Bulmer, S., 2003, An updated description of the New Guinea singing dog (Canis hallstromi, Troughton 1957): Journal of Zoology, London, v. 261, p. 109118.Google Scholar
Koler-Matznick, J., Yates, B.C., Bulmer, S., and Brisbin, I.L. Jr., 2007, The New Guinea singing dog: its status and scientific importance: Australian Mammalogy, v. 29, p. 4756.Google Scholar
Korth, W. W., and Baskin, J. A., 2009, A new species of Leptarctus (Carnivora, Mustelidae) from the Late Clarendonian (Late Miocene) of Kansas: Annals of Carnegie Museum, v. 78, p. 2944.Google Scholar
Larivière, S., and Pasitschniak-Arts, M., 1996, Vulpes vulpes : Mammalian species, v. 537, p. 111.Google Scholar
Lee, S., and Mill, P.J., 2004, Cranial variation in British mustelids: Journal of Morphology, v. 260, p. 5764.Google Scholar
Leidy, J., 1856, Notices of extinct Vertebrata discovered by Dr. F.V. Hayden, during the expedition to the Sioux country under the command of Lieut. G.K. Warren: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 8, p. 311312.Google Scholar
Lichtenstein, H., 1830, Erläuterungen der Nachrichten des Francisco Hernandez von den Cierfüssigen Thieren Neuspaniens: Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1827, v. 1830, p. 89127.Google Scholar
Lim, J.-D., and Martin, L.D., 2000, A new primitive leptarctine (Mustelidae) from the North American Miocene: Neues Jahrbuch für Geologie und Paläontologie Monatshefte, v. 10, p. 632640.Google Scholar
Lim, J.-D., and Martin, L.D., 2001a, A new species of Leptarctus (Mustelidae) from the Miocene of Kansas, USA: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 10, p. 633640.Google Scholar
Lim, J.-D., and Martin, L.D., 2001b, New evidence for plant-eating in a Miocene mustelid: Current Science, v. 81, p. 314317.Google Scholar
Lim, J.-D., and Martin, L.D., 2002, A new fossil mustelid from the Miocene of South Dakota, USA: Naturwissenschaften, v. 89, p. 270274.Google Scholar
Lim, J.-D., and Miao, D., 2000, New species of Leptarctus (Carnivora, Mustelidae) from the Miocene of Nebraska, USA: Vertebrata PalAsiatica, v. 38, p. 5257.Google Scholar
Lim, J.-D., Martin, L.D., and Wilson, R.W., 2001, A new species of Leptarctus (Carnivora, Mustelidae) from the late Miocene of Texas: Journal of Paleontology, v. 75, p. 10431046.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis, 10th ed.: Stockholm, Laurentius Salvius, 824 p.Google Scholar
Linnaeus, C., 1766, Systema Naturæ per Regna Tria Naturæ, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis, Tomus I, Editio duodecima, reformata: Holmiæ, Salvius, 532 p.Google Scholar
Long, C.A., 1973, Taxidea taxus : Mammalian Species, v. 26, p. 14.Google Scholar
Lotze, J. H., and Anderson, S., 1979, Procyon lotor : Mammalian Species, v. 119, p. 18.Google Scholar
Maguire, K.C., 2013, Understanding the paleoecology and niche dynamics of mammals in the Mascall Fauna (Middle Miocene), Oregon [Ph.D. dissertation]: Berkeley, University of California, 128 p.Google Scholar
Matthew, W.D., 1924, Third contribution to the Snake Creek fauna: Bulletin of the American Museum of Natural History, v. 50, p. 59210.Google Scholar
McGarigal, K., 2015, Biostats: http://www.umass.edu/landeco/teaching/ecodata/labs/biostats.R. Published date: February 25, 2015.Google Scholar
Meers, M.B., 2002, Maximum bite force and prey size of Tyrannosaurus rex and their relationships to the inference of feeding behavior: Historical Biology, v. 16, p. 112.Google Scholar
Myslajek, R.W., Nowak, S., Rożen, A., and Jędrzejewska, B., 2013, Diet of the Eurasian badger (Meles meles) in the Western Carpathians and its implications for species conservation in Poland: Animal Biology, v. 63, p. 271284.Google Scholar
Nowak, R.M., 2005, Walker’s Carnivores of the World: Baltimore, Johns Hopkins University Press, 313 p.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., and Wagner, H., 2015, Community ecology package: http://cran.r-project.org/web/packages/vegan. Published date: April 07, 2017.Google Scholar
Olsen, S.J., 1957, Leptarctines from the Florida Miocene (Carnivora, Mustelidae): American Museum Novitates, v. 1861, p. 17.Google Scholar
Olsen, S.J., 1958, The skull of Leptarctus ancipidens from the Florida Miocene: Florida Geological Survey, Contributions to Florida Vertebrate Paleontology, v. 2, p. 111.Google Scholar
Pallas, P.S., 1780, Spicilegia Zoologica, quibus novae imprimis et obcurae animalium species iconibus: Berolini, G.A. Lange, 1774–1780, Fas. , 14, p. 5.Google Scholar
Peigné, S., Salesa, M.J., Antóm, M., and Morales, J., 2005, Ailurid carnivoran mammal Simocyon from the late Miocene of Sapin and the systematics of the genus: Acta Palaeontologica Polonica, v. 50, p. 219238.Google Scholar
Perry, G.C., 1810, Arcana; or, the Museum of Natural History: London, G. Smeeton, unpaginated.Google Scholar
Popowics, T.E., 2003, Postcanine dental form in the Mustelidae and Viverridae (Carnivora: Mammalia): Journal of Morphology, v. 256, p. 322341.Google Scholar
R Development Core Team, 2015, R: A Language and Environment for Statistical Computing: Vienna, Austria, R Foundation for Statistical Computing. http://www.R-project.org.Google Scholar
Riley, M.A., 1985, An analysis of masticatory form and function in three mustelids (Martes americana, Lutra canadensis, Enhydra lutris): Journal of Mammalogy, v. 66, p. 519528.Google Scholar
Roberts, P.D., Somers, M.J., White, R.M., and Nel, J.A.K., 2007, Diet of the South African large-spotted genet Genetta tigrina (Carnivora, Viverridae) in a coastal dune forest: Acta Theriologica, v. 52, p. 4553.Google Scholar
Robles, J.M., Alba, D.M., Moyà-Solà, S., Casanovas-Vilar, I., Galindo, J., Rotgers, C., Almécija, S., and Carmona, R., 2010, New craniodental remains of Trocharion albanense Major, 1903 (Carnivora, Mustelidae), from the Vallès-Penedès Basin (Middle to Late Miocene, Barcelona, Spain): Journal of Vertebrate Paleontology, v. 30, p. 547562.Google Scholar
RStudio, 2015, RStudio: Integrated Development Environment for R: Boston, Massachusetts, USA. http://www.rstudio.org.Google Scholar
Sato, J.J., Wolsan, M., Prevosti, F.J., D’Elía, G., Begg, C., Begg, K., Hosoda, T., Campbell, K.L., and Suzuki, H., 2012, Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea): Molecular Phylogenetics and Evolution, v. 63, p. 745757.Google Scholar
Schinz, H.R., 1821, Das Thierreich eingetheilt nach dem Bau der Thiere als Grundlage ihrer Naturgeschichte und der vergleichenden Anatomie von dem Herrn Ritter von Cuvier: Stuttgart, Germany, Erster Band, Saugethiere und Vogel, 894 p.Google Scholar
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, v. 9, p. 671675.Google Scholar
Schreber, J.C.D., 1776, Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen: Erlangen, Wolfgang Walther, v. 3, 361.Google Scholar
Schreber, J.C.D., 1777, Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen: Erlangen, Wolfgang Walther, 1112 p.Google Scholar
Simpson, G.G., 1930, Tertiary land mammals of Florida: Bulletin of the American Museum of Natural History, v. 59, p. 149211.Google Scholar
Stock, C., 1930, Carnivora new to the Mascall Miocene fauna of eastern Oregon: Carnegie Institution of Washington Publication, v. 404, p. 4348.Google Scholar
Storr, G.C.C., 1780, Prodromus methodi mammalium: Tübingen, Reissian, 43 p.Google Scholar
Tedford, R.H., Albright, L.B. III, Barnosky, A.D., Ferrusquia-Villafranca, I., Hunt, R.M. Jr., Storer, J.E., Swisher, C.C. III, Voorhies, M.F., Webb, S.D., and Whistler, D.P., 2004, Mammalian biochronology of the Arikareean through Hemphillian interval (Late Oligocene through Early Pliocene Epochs), in Woodburne, M.O., ed., Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology: New York, New York, Columbia University Press, p. 169231.Google Scholar
Thomason, J.J., 1991, Cranial strength in relation to estimated biting forces in some mammals: Canadian Journal of Zoology, v. 69, p. 23262333.Google Scholar
Turton, W., 1806, A General System of Nature, Through the Three Grand Kingdoms of Animals, Vegetables, and Minerals: London, Lackington and Allen, 943 p.Google Scholar
Valenciano, A., Abella, J., Sanisidro, O., Hartstone-Rose, A., Álvarez-Sierra, M.A., and Morales, J., 2015, Complete description of the skull and mandible of the giant mustelid Eomellivora piveteaui Ozansoy, 1965 (Mammalia, Carnivora, Mustelidae), from Batallones (MN10), Late Miocene (Madrid, Spain): Journal of Vertebrate Paleontology, e934570.Google Scholar
Valenciano, A., Baskin, J.A., Abella, J., Pérez-Ramos, A., Álvarez-Sierra, M.A., Morales, J., and Hartstone-Rose, A., 2016, Megalictis, the bone-crushing giant mustelid (Carnivora, Mustelidae, Oligobuninae) from the Early Miocene of North America: PLoS ONE, v. 11, e0152430.Google Scholar
van Gelder, R.G., 1959, A taxonomic revision of the spotted skunks (genus Spilogale): Bulletin of the American Museum of Natural History, v. 117, p. 229392.Google Scholar
Van Valkenburgh, B., 1990, Skeletal and dental predictors of body mass in carnivores, in Damuth, J., and MacFadden, B.J., eds., Body Size in Mammalian Paleobiology: Estimation and Biological iImplications: Cambridge, Cambridge University Press, p. 181206.Google Scholar
Vizcaíno, S.F., De Iuliis, G., and Bargo, M.S., 1998, Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheriidae): when anatomy constrains destiny: Journal of Mammalian Evolution, v. 5, p. 291322.Google Scholar
Wade-Smith, J., and Verts, B.J., 1982, Mephitis mephitis : Mammalian Species, v. 173, p. 17.Google Scholar
Wang, X., Qiu, Z., and Opdyke, N., 2003, Litho-, bio-, and magnetostratigraphy and paleoenvironment of Tunggur Formation (Middle Miocene) in central Inner Mongolia, China: American Museum Novitates, v. 3411, p. 131.Google Scholar
Wang, W., Qiu., Z., and Wang, B., 2004, A new leptarctine (Carnivora: Mustelidae) from the early Miocene of the northern Tibetan Plateau: implications for the phylogeny and zoogeography of basal mustelids: Zoological Journal of the Linnean Society, v. 142, p. 405421.Google Scholar
White, T.E., 1941, Additions to the Miocene fauna of Florida: Proceedings of the New England Zoological Club, v. 18, p. 9198.Google Scholar
Wilson, G.P., Ekdale, E.G., Hoganson, J.W., Calede, J.J., and Vander Linden, A., 2016, A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials: Nature Communications, v. 7, 13734. doi: 10.1038/ncomms13734.CrossRefGoogle ScholarPubMed
Wolsan, M., 1993, Phylogeny and classification of early European Mustelida (Mammalia: Carnivora): Acta Theriologica, v. 38, p. 345384.Google Scholar
Wroe, S., McHenry, C., and Thomason, J., 2005, Bite club: comparative bite force in big biting mamamls and the prediction of predatory behavior in fossil taxa: Proceedings of the Royal Society B, v. 272, p. 619625.Google Scholar
Yom-Tov, Y., Yom-Tov, S., and Baagøe, H., 2003, Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the twentieth century: an effect of improved diet?: Evolutionary Ecology Research, v. 5, p. 10371048.Google Scholar
Zhai, R.J., 1964, Leptarctus and other Carnivora form the Tung Gur Formation, Inner Mongolia: Vertebrata PalAsiatica, v. 8, p. 1830.Google Scholar