Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T04:02:06.421Z Has data issue: false hasContentIssue false

Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota

Published online by Cambridge University Press:  20 May 2016

James C. Brower*
Affiliation:
Heroy Geology Laboratory, Syracuse University, Syracuse, New York, 13244-1070

Abstract

Plicodendrocrinus n. gen. is erected for dendrocrinids with solid pentalobate columns, strong stellate ridges on the aboral cup plates, and highly plicate anal sac plates. Five species are assigned: Middle Ordovician; P. proboscidiatus (E. Billings, not W. R. Billings) n. comb., from the Trenton of Canada and the Dunleith of Iowa and Minnesota. Upper Ordovician; P. casei (Meek) n. comb., from the Richmond and Gamachian of the midcontinent; P. rugocyathus (Ramsbottom) n. comb., from the Ashgill of England; P. collapsus (Donovan) n. comb.; and P. granditubus (Ramsbottom) n. comb., from the Ashgill of Scotland.

The Middle Ordovician dendrocrinids from the Dunleith Formation (Trentonian) of northern Iowa and southern Minnesota are P. proboscidiatus (E. Billings), Dendrocrinus acutidactylus E. Billings, and Quienquecaudex springeri (Kolata). All species are also known from the Middle Ordovician of Ontario and Quebec. In addition, O. springeri (Kolata) is recorded from the Platteville Group of Illinois. Biogeographically, the Dunleith dendrocrinids are most similar to those of the northern Appalachians.

Plicodendrocrinus casei (Meek) ranges widely in the midcontinent and has been obtained from the Maysvillian and Richmondian Maquoketa Formation of Iowa and Minnesota, several Richmondian units in the Cincinnati area, and the Gamachian Girardeau Limestone of Illinois and Missouri.

A quantitative cladistic analysis of Ordovician cladid and flexible crinoids produces five groups: primitive forms including Aethocrinus, Compagicrinus, Ottawacrinus, and Grenprisia; cyathocrinids with Carabocrinus, Palaeocrinus, Illemocrinus, and Porocrinus; merocrinids with Archaetaxocrinus, Merocrinus, Praecupulocrinus, Polycrinus, and Aithriocrinus; dendrocrinids with Esthonocrinus, Eoparisocrinus, Dendrocrinus, Quienquecaudex, Plicodendrocrinus and perhaps Eopinnacrinus; and Cupulocrinus and the flexibles, Protaxocrinus, Clidochirus, and Proanisocrinus. These groups are not consistent with the present taxonomy and several suggestions for restructuring are presented, notably grouping flexibles with cladids and adjusting the taxonomic level of cyathocrinids. The cladograms for early cladids and flexibles are poorly correlated with stratigraphic position because of numerous unfilled range zones for the taxa or their ancestors. Thus, the cladograms generate predictions that can be tested by later finds in the Lower and the lower part of the Middle Ordovician. The overall evolutionary trends are highly mosaic with numerous parallelisms and reversals.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1984. The genus Clidochirus from the Early Silurian of Ohio (Crinoidea:Llandoverian). Journal of Paleontology, 58:13411346.Google Scholar
Ausich, W. I. 1986. Early Silurian inadunate crinoids (Brassfield Formation, Ohio). Journal of Paleontology, 60:719735.Google Scholar
Bassler, R. S. 1915. Bibliographic index of American Ordovician and Silurian fossils. United States National Museum Bulletin, 92, 1,521 p.Google Scholar
Bassler, R. S., and Moodey, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geological Society of America Special Paper, 45:1734.CrossRefGoogle Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science Report for 1898, p. 916922.Google Scholar
Bather, F. A. 1900. Chapter XI. The Crinoidea, p. 94204. In Lankester, E. R. (ed.), A Treatise on Zoology. Part III. The Echinoderma. Adam & Charles Black, London.Google Scholar
Bather, F. A. 1913. The Trenton crinoid, Ottawacrinus W. R. Billings. Canada Geological Survey Victoria Memorial Museum Bulletin, 1, 10 p.Google Scholar
Billings, E. 1857. New species of fossils from Silurian rocks of Canada. Geological Survey of Canada Report of Progress, 1853-1856, p. 247345.Google Scholar
Billings, E. 1859. On the Crinoideae of the Lower Silurian rocks of Canada. Geological Survey of Canada Figures and Descriptions of Canadian Organic Remains, Decade 4, p. 766.Google Scholar
Billings, W. R. 1885. Two new species of crinoids. Transactions, Ottawa Field Naturalists' Club, 6:127129.Google Scholar
Billings, W. R. 1887. A new genus and three new species of crinoids from the Trenton Formation with notes on a large specimen of Dendrocrinus proboscidiatus . The Ottawa Naturalist, 1:4954.Google Scholar
Bolton, T. E. 1970. Echinodermata from the Ordovician (Pleurocystites, Cremacrinus) and Silurian (Hemicystites, Protaxocrinus, Macnamaratylus) of Lake Timiskaming Region, Ontario and Quebec. Geological Survey of Canada Bulletin, 187:5966.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7:261499.Google Scholar
Brower, J. C. 1975. Silurian crinoids from the Pentland Hills, Scotland. Palaeontology, 18:631656.Google Scholar
Brower, J. C. 1992a. Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:99128.Google Scholar
Brower, J. C. 1992b. Hybocrinid and disparid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:973993.Google Scholar
Brower, J. C. 1994. Camerate crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 68:570599.Google Scholar
Brower, J. C. In press. Eoparisocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology.Google Scholar
Brower, J. C., and Strimple, H. L. 1983. Ordovician calceocrinids from northern Iowa and southern Minnesota. Journal of Paleontology, 57:12611281.Google Scholar
Brower, J. C., and Veinus, J. 1974. Middle Ordovician crinoids from southwestern Virginia and eastern Tennessee. Bulletins of American Paleontology, 66(283):1125.Google Scholar
Brower, J. C., and Veinus, J. 1978. Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bulletins of American Paleontology, 74(304):372506.Google Scholar
Brower, J. C., and Veinus, J. 1982. Long-armed cladid inadunates. University of Kansas Paleontological Contributions, Monograph, 1:129144.Google Scholar
Christy, D. 1848. Letters on geology. J. M. Christy, Printer, Rossville, U.S.A., 72 and 11 p. Google Scholar
Cummings, E. R. 1908. The stratigraphy and paleontology of the Ordovician rocks of Indiana. Indiana Department of Geology and Natural Resources, Annual Report, 32:6051188.Google Scholar
Donovan, S. K. 1992. New cladid crinoids from the Late Ordovician of Girvan, Scotland. Palaeontology, 35:149158.Google Scholar
Donovan, S. K., and Veltkamp, C. J. 1993. Crinoids from the Upper Ashgill (Upper Ordovician) of Wales. Journal of Paleontology, 67:604613.Google Scholar
Eckert, J. D. 1984. Early Llandovery crinoids and stelleroids from the Cataract Group (Lower Silurian) in southern Ontario, Canada. Royal Ontario Museum Life Sciences Contributions, 137, 82 p.Google Scholar
Eckert, J. D. 1987. Illemocrinus amphiatus, a new cladid inadunate crinoid from the Middle Ordovician of Ontario. Canadian Journal of Earth Sciences, 24:860865.CrossRefGoogle Scholar
Foerste, A. F. 1893. The reproduction of arms in crinoids. American Geologist, 12:270271, 340.Google Scholar
Foerste, A. F. 1924. New echinoderms from the Maquoketa Beds of Fayette County, Iowa, part two. Iowa Geological Survey Annual Report, 29:345369, 376-382.Google Scholar
Frest, T. J., and Strimple, H. L. 1978. The flexible crinoid Anisocrinus (Ordovician-Silurian) in North America. Journal of Paleontology, 52:683696.Google Scholar
Grabau, A. W., and Shimer, H. W. 1910. North American index fossils, Volume II. A. G. Seiler and Company, New York, 670 p.Google Scholar
Grant, J. A. 1881. Description of a new species of Porocrinus from the Trenton Limestone. Transactions Ottawa Field Naturalists' Club, 2:4244.Google Scholar
Guensburg, T. E. 1984. Echinodermata of the Middle Ordovician Lebanon Limestone, central Tennessee. Bulletins of American Paleontology 86(319):1100.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology, 20:407410.Google Scholar
Hall, J. 1847. Palaeontology of New-York. Volume I. Containing descriptions of the organic remains of the Lower Division of the New-York System (equivalent of the Lower Silurian rocks of Europe). New York Natural History Survey, C. van Benthuysen, Albany, 338 p.Google Scholar
Hall, J. 1852. Palaeontology of New-York. Volume II. Containing descriptions of the organic remains of the Lower Middle Division of the New-York System (equivalent in part to the Middle Silurian Rocks of Europe). New York Natural History Survey, C. van Benthuysen, Albany, 362 p.Google Scholar
Haugh, B. N. 1979. Late Ordovician channel-dwelling crinoids from southern Ontario, Canada. American Museum Novitates, Number 2665, 25 p.Google Scholar
Hudson, G. H. 1905. Contributions to the fauna of the Chazy Limestone on Valcour Island, Lake Champlain. New York State Museum Bulletin, 80:270295, 360-368.Google Scholar
Hudson, G. H. 1911. Studies of some early Siluric Pelmatozoa. New York State Museum Bulletin, 148:195272.Google Scholar
Hudson, G. H. 1917. Some structural features of a fossil embryo crinoid. New York State Museum Bulletin, 196:161163.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Palaeontologischen Zeitschrift, 3:1128.Google Scholar
Jobson, L., and Paul, C. R. C. 1979. Compagicrinus fenestratus, a new Lower Ordovician inadunate crinoid from North Greenland. Rapport Grønlands Geologiske Undersøgelse, 91:7181.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1992. Advanced cladid crinoids from the Middle Mississippian of the east-central United States: primitive-grade calyces. Journal of Paleontology, 66:461480.Google Scholar
Kesling, R. V. 1972. A new species of Porocrinus from the Middle Ordovician Kimmswick Limestone of Missouri. University of Michigan Contributions from the Museum of Paleontology, 24:17.Google Scholar
Kesling, R. V., and Paul, C. R. C. 1968. New species of Porocrinidae and brief remarks upon these unusual crinoids. University of Michigan Contributions from the Museum of Paleontology, 22:132.Google Scholar
Kolata, D. R. 1975. Middle Ordovician echinoderms from northern Illinois and southern Wisconsin. Paleontological Society, Memoir 7 (Journal of Paleontology, 49 [3] Supplement), 74 p.Google Scholar
Kolata, D. R. 1986. Crinoids of the Champlainian (Middle Ordovician) Guttenberg Formation-Upper Mississippi Valley Region. Journal of Paleontology, 60:711718.Google Scholar
Kolata, D. R., Brower, J. C., and Frest, T. J. 1987. Upper Mississippi Valley Champlainian and Cincinnatian echinoderms. Minnesota Geological Survey Report of Investigations, 35:179181.Google Scholar
Lane, N. G. 1978. Evolution-Cladida-Cyathocrinina and Dendrocrinina, p. T294T298. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Lesley, J. P. 1889. A dictionary of the fossils of Pennsylvania and neighboring states. Geological Survey of Pennsylvania Report of Progress, 1283 p.Google Scholar
Levorson, C. O., and Gerk, A. J. 1975. Field recognition of subdivision of the Galena Group within Winneshiek County. Guidebook for Field Gathering of Iowa, Minnesota, and Wisconsin Academies of Science, 17 p.Google Scholar
Lewis, R. D. 1981. Archaetaxocrinus, new genus, the earliest known flexible crinoid (Whiterockian) and its phylogenetic implications. Journal of Paleontology, 55:227238.Google Scholar
Meek, F. B. 1871. On some new Silurian crinoids and shells. American Journal of Science, Series 3, 2:295302.Google Scholar
Meek, F. B. 1873. Fossils of the Cincinnati Group. Geological Survey of Ohio, Volume 1, Part 2 (Palaeontology), 175 p.Google Scholar
Meek, F. B., and Worthen, A. H. 1868. Fossils of the Cincinnati Group. Illinois Geological Survey Geology and Paleontology, 3:324343.Google Scholar
Meek, F. B., and Worthen, A. H. 1875. Description of invertebrates. Illinois Geological Survey Geology and Paleontology, 6:489532.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea or lily-shaped animals, with observation on the genera Asteria, Euryale, Comatula, and Marsupites . Bryan & Company, Bristol, 150 p.Google Scholar
Miller, S. A. 1880. Description of four new species and a new variety of Silurian fossils, and remarks upon others. Cincinnati Society of Natural History Journal, 3:232236.Google Scholar
Miller, S. A. 1881. Subcarboniferous fossils from the Lake Valley mining district of New Mexico with description of new species and description of new species of fossils from the Hudson River Group, and remarks upon others. Cincinnati Society of Natural History Journal, 4:306319.Google Scholar
Miller, S. A. 1889. North American geology and palaeontology. Western Methodist Book Concern (Cincinnati), 664 p.Google Scholar
Miller, S. A., and Gurley, W. F. E. 1894. New genera and species of Echinodermata. Illinois State Museum of Natural History Bulletin, 5:153.Google Scholar
Moore, R. C. 1962. Ray structures of some inadunate crinoids. University of Kansas Paleontological Contributions Echinodermata, Article 5, 47 p.Google Scholar
Moore, R. C. 1978. Subclass Flexibilia Zittel, 1895, p. T765T812. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 167 p.Google Scholar
Moore, R. C., Lane, N. G., and Strimple, H. L. 1978. Order Cladida Moore & Laudon, 1943, p. T758T759. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Philip, G. M., and Strimple, H. L. 1971. An interpretation of the crinoid Aethocrinus moorei Ubaghs. Journal of Paleontology, 45:491493.Google Scholar
Prokop, R. J. 1984. Revision of the genus Polycrinus Jaekel, 1918 (Crinoidea, Inadunata) from the Upper Ordovician of Bohemia. Časopis pro Mineralogii a Geologii, 29:181184.Google Scholar
Ramsbottom, W. H. C. 1961. A monograph on British Ordovician Crinoidea. Palaeontographical Society Monographs, 114(492):137.Google Scholar
Ringueberg, E. N. S. 1888. Some new species of fossils from the Niagara Shales of western New York. Philadelphia Academy of Natural Sciences Proceedings for 1888, 131137.Google Scholar
Shourd, M. E., and Winter, H. F. 1976. A new species of Porocrinus from the Middle Ordovician Plattin Limestone of Missouri. Journal of Paleontology, 50:11911194.Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Slocom, A. W. 1924. New echinoderms from the Maquoketa Beds of Fayette County, Iowa. Part 1. Iowa Geological Survey Annual Reports for 1919 and 1920, 29:320344.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. W. H. Freeman and Company, San Francisco, 573 p.Google Scholar
Springer, F. 1911. On a Trenton echinoderm fauna at Kirkfield, Ontario. Canada Geological Survey Memoir, 15-P, 150.Google Scholar
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Institution Publication, 2501:1486.Google Scholar
Springer, F. 1926. American Silurian crinoids. Smithsonian Institution Publication, 2871:1143, 167-239.Google Scholar
Springer, F. 1927. Descriptions of new species of Crinoidea. Canadian Geological Survey Memoir, 154:137138.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology Special Publication, 283 p.Google Scholar
Sprinkle, J. 1982. Large-calyx cladid inadunates. University of Kansas Paleontological Contributions Monograph, 1:145169.Google Scholar
Sprinkle, J., and Wahlman, G. P. 1994. New echinoderms from the Early Ordovician of west Texas. Journal of Paleontology, 68:324338.Google Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Computer program distributed by the Illinois Natural History Survey.Google Scholar
Swofford, D. L., and Begle, D. P. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1. Users Manual distributed by the Illinois Natural History Survey, 257 p.Google Scholar
Templeton, J. S., and Willman, H. B. 1963. Champlainian Series (Middle Ordovician) in Illinois. Illinois State Geological Survey Bulletin, 89, 260 p.Google Scholar
Thomas, A. O., and Ladd, H. S. 1926. Additional cystoids and crinoids from the Maquoketa Shale of Iowa. University of Iowa Studies in Natural History, 11:518.Google Scholar
Ubaghs, G. 1969. Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancien crinoïde dicyclique connu. University of Kansas Paleontological Contribution Paper, 38, 25 p.Google Scholar
Ubaghs, G. 1972. More about Aethocrinus moorei Ubaghs, the oldest known dicyclic crinoid. Journal of Paleontology, 46:773775.Google Scholar
Ubaghs, G. 1978a. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1978b. Evolution-Origin of crinoids, p. T275T281. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ulrich, E. O. 1879. Descriptions of new genera and species of fossils from the Lower Silurian about Cincinnati. Cincinnati Society of Natural History Journal, 2:830.Google Scholar
Wachsmuth, C., and Springer, F. 1880. Revision of the Palaeocrinoidea, Part 1, The families Ichthyocrinidae and Cyathocrinidae. Philadelphia Academy of Natural Sciences Proceedings for 1879:226378 (1-153).Google Scholar
Wachsmuth, C., and Springer, F. 1886. Revision of the Palaeocrinoidea, Part 3, Section 2. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions. Philadelphia Academy of Natural Sciences Proceedings for 1886:64-226 (140-302, index 303-334).Google Scholar
Wachsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Museum of Comparative Zoology Memoir, 21, 22:1897.Google Scholar
Walcott, C. D. 1884. Descriptions of new species of fossils from the Trenton Group of New York. New York State Museum of Natural History Annual Report, 35:207214.Google Scholar
Webster, G. D. 1973. Bibliography and index of Paleozoic crinoids 1942-1968. Geological Society of America Memoir, 137, 341 p.Google Scholar
Wilson, A. E. 1946. Echinodermata of the Ottawa Formation of the Ottawa-St. Lawrence Lowland. Canada Geological Survey Bulletin, 4:161.Google Scholar