Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:14:05.358Z Has data issue: false hasContentIssue false

Ediacaran Acanthomorphic Acritarchs and Other Microfossils from Chert Nodules of the Upper Doushantuo Formation in the Yangtze Gorges Area, South China

Published online by Cambridge University Press:  11 July 2017

Pengju Liu
Affiliation:
Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China,
Shuhai Xiao
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA,
Chongyu Yin
Affiliation:
Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China,
Shouming Chen
Affiliation:
Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China,
Chuanming Zhou
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
Meng Li
Affiliation:
Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China,

Abstract

Silicified microfossils preserved in chert nodules of the Doushantuo Formation in the Yangtze Gorges area of South China have great potential to improve the biostratigraphic subdivision and correlation of the Ediacaran System. This potential can be realized only if solid taxonomy is available. However, a systematic treatment of these microfossils (particularly acanthomorphic acritarchs) is lacking, greatly limiting their biostratigraphic potential. This paper presents the systematic paleontology of silicified microfossils from upper Doushantuo Formation (Member III) chert nodules at three sections in the Yangtze Gorges area. More than 90 species of microfossils are described, including 66 named taxa of acanthomorphs, seven named taxa of sphaeromorphs, 12 taxa of cyanobacterial filaments and coccoids, four taxa of algal thalli, and two species of tubular microfossils. Several acritarch species, including Appendisphaera clava n. sp., Mengeosphaera grandispina n. sp., M. stegosauriformis n. sp., Leiosphaeridia, and possibly Sinosphaera rupina, are shown to be multicellular organisms, consistent with the proposition that some Ediacaran acritarchs may be diapause eggs of early animals. This study supports the view that the Tianzhushania spinosa acanthomorph biozone is unique to the lower Doushantuo Formation in South China (and perhaps its equivalent in northern India) and that Ediacaran acanthomorph assemblages from Australia, Siberia, and East European Platform are younger than the Tianzhushania spinosa biozone. It is proposed that the first occurrence of Hocosphaeridium anozos, a species with easily recognizable morphology and wide taphonomic and geographic distributions, be used to define the second Doushantuo acanthomorph biozone succeeding the Tianzhushania spinosa biozone. New taxa described in this paper include three new genera (Bispinosphaera n. gen.; Yushengia n. gen.; and Granitunica n. gen.) and 40 new species: Appendisphaera? brevispina n. sp., A. clava n. sp., A.? hemisphaerica n. sp., A. longispina n. sp., A. setosa n. sp., Bispinosphaera peregrina n. gen. n. sp., Crinita paucispinosa n. sp., Ericiasphaera densispina n. sp., Hocosphaeridium dilatatum n. sp., Knollisphaeridium denticulatum n. sp., K. longilatum n. sp., K. obtusum n. sp., K. parvum n. sp., Mengeosphaera angusta n. sp., M. bellula n. sp., M. cf. bellula n. sp., M. constricta n. sp., M.? cuspidata n. sp., M.? gracilis n. sp., M. grandispina n. sp., M. latibasis n. sp., M. minima n. sp., M. spicata n. sp., M. spinula n. sp., M. stegosauriformis n. sp., M. triangularis n. sp., M. uniformis n. sp., Sinosphaera asteriformis n. sp., Tanarium acus n. sp., T. elegans n. sp., T. longitubulare n. sp., T.? minimum n. sp., T. obesum n. sp., T. varium n. sp., Urasphaera fungiformis n. sp., U. nupta n. sp., Yushengia ramispina n. gen. n. sp., Granitunica mcfaddeniae n. gen. n. sp., Osculosphaera arcelliformis n. sp., and O. membranifera n. sp.

Type
Research Article
Copyright
Copyright © 2014, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arouri, K., Greenwood, P. F., and Walter, M. R. 1999. A possible chlorophycean affinity of some Neoproterozoic acritarchs. Organic Geochemistry, 30:13231337.CrossRefGoogle Scholar
Arouri, K., Greenwood, P. F., and Walter, M. R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organic Geochemistry, 31:7589.Google Scholar
Awramik, S. M., McMenamin, D. S., Yin, C., Zhao, Z., Ding, Q., and Zhang, S. 1985. Prokaryotic and eukaryotic microfossils from a Proterozoic/Phanerozoic transition in China. Nature, 315:655658.Google Scholar
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint Chert. Science, 147:563577.Google Scholar
Brotzen, F. 1941. Några bidrag till visingsöformationens stratigrafi och tektonik. Geologiska Föreningens Förhandlingar, 63:245261.CrossRefGoogle Scholar
Buick, R. and Knoll, A. H. 1999. Acritarchs and microfossils from the Mesoproterozoic Bangemall Group, northwestern Australia. Journal of Paleontology, 73:744764.CrossRefGoogle ScholarPubMed
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:184.CrossRefGoogle Scholar
Cai, Y., Hua, H., Xiao, S., Schiffbauer, J. D., and Li, P. 2010. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: importance of event deposits. Palaios, 25:487506.CrossRefGoogle Scholar
Chen, M. and Liu, K. 1986. The geological significance of newly discovered microfossils from the upper Sinian (Doushantuo age) phosphorites. Scientia Geologica Sinica, 1:4653.Google Scholar
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceeding of the National Academy, U.S.A., 106:65196524.Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.CrossRefGoogle ScholarPubMed
Dong, L., Xiao, S., Shen, B., and Zhou, C. 2008. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society of London, 165:367378.Google Scholar
Dong, L., Xiao, S., Shen, B., Zhou, C., Li, G., and Yao, J. 2009. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim Block, northwestern China). Journal of Paleontology, 83:3044.CrossRefGoogle Scholar
Downie, C. and Sarjeant, W. A. S. 1963. On the interpretation and status of some hystrichosphere genera. Palaeontology, 6:8396.Google Scholar
Dunthorn, M., Lipps, J. H., and Stoeck, T. 2010. Reassessment of the putative ciliate fossils Eotintinnopsis, Wujiangella, and Yonyangella from the Neoproterozoic Doushantuo Formation in China. Acta Protozoologica, 49:139144.Google Scholar
Eisenack, A. 1958. Tasmanites Newton 1875 und Leiosphaeridia n. gen. aus Gattungen der Hystrichosphaeridea. Palaeontographica Abteilung A, 110:119.Google Scholar
Eisenack, A. 1969. Zur Systematik einiger palaozoischer Hystrichosphaeren (Acritarcha) des baltischen Gebietes. Neues Jahrbuch für Geologie und Palaontologie, Abhandlungen, 133:245266.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs. Proceedings of the National Academy of Sciences, U.S.A., 49:158164; 298–302.CrossRefGoogle ScholarPubMed
Faizullin, M. S. 1998. New data on Baikalian microfossils of the Patom Upland. Russian Geology and Geophysics, 3:328337. (In Russian) Google Scholar
Golub, I. N. 1979. Novaya gruppa problematichnykh mikroobrazovanij v vendskikh otlozheniyakh Orshanskoj vpadiny (Russkaya platforma). [A new group of problematic microstructures in Vendian deposits of the Orshanka Basin (Russian Platform)], p. 147155. In Sokolov, S. B. (ed.), Paleontologiya Dokembriya i Rannego Kembriya. Nauka, Leningrad.Google Scholar
Golubic, S. and Barghoorn, E. S. 1977. Interpretation of microbial fossils with special reference to the Precambrian, p. 114. In Flügel, E. (ed.), Fossil Algae: Recent Results and Developments. Springer-Verlag, Berlin.Google Scholar
Golubkova, E. Y., Raevskaya, E. G., and Kuznetsov, A. B. 2010. Lower Vendian microfossil assemblages of East Siberia: significance for solving regional stratigraphic problems. Stratigraphy and Geological Correlation, 18:353375.Google Scholar
Green, J. W., Knoll, A. H., and Swett, K. 1989. Microfossils from silicified stromatolitic carbonates of the upper Proterozoic Limestone-Dolomite “Series,” central East Greenland. Geological Magazine, 126:567585.Google Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Memoirs of the Association of Australasian Palaeontologists, 31:1439.Google Scholar
Grey, K. and Calver, C. R. 2007. Correlating the Ediacaran of Australia, p. 115135. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. The Geological Society of London Special Publication 286, London.Google Scholar
Grey, K. and Willman, S. 2009. Taphonomy of Ediacaran acritarchs from Australia: significance for taxonomy and biostratigraphy. Palaios, 24:239256.CrossRefGoogle Scholar
Hermann, T. N. 1974. Findings of mass accumulations of trichomes in the Riphean, p. 610. In Timofeev, B. V. (ed.), Proterozoic and Paleozoic microfossils of the U.S.S.R. Nauka, Moscow.Google Scholar
Horodyski, R. J. and Donaldson, J. A. 1980. Microfossils from the middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11:125159.Google Scholar
Hua, H., Chen, Z., Yuan, X., Xiao, S., and Cai, Y. 2010. The earliest Foraminifera from southern Shaanxi, China. Science China Earth Sciences, 53:17561764.Google Scholar
Huldtgren, T., Cunningham, J. A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengtson, S. 2011. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science, 334:16961699.CrossRefGoogle ScholarPubMed
Huntley, J. W., Xiao, S., and Kowalewski, M. 2006. 1.3 billion years of acritarch history: an empirical morphospace approach. Precambrian Research, 144:5268.CrossRefGoogle Scholar
Jankauskas, T. V., Mikhailova, N. S., and Hermann, T. N. 1989. Mikrofossilii Dokembriya SSSR [Precambrian Microfossils of the U.S.S.R]. Nauka, Leningrad, 190 p.Google Scholar
Jiang, G., Kaufman, A. J., Christie-Blick, N., Zhang, S., and Wu, H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 261:303320.CrossRefGoogle Scholar
Jiang, G., Kennedy, M., Christie-Blick, N., Wu, H., and Zhang, S. 2006. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 76:978995.Google Scholar
Jiang, G., Shi, X., Zhang, S., Wang, Y., and Xiao, S. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19:831849.Google Scholar
Kjellström, G. 1971. Ordovician microplankton (baltisphaerids) from the Grötlingbo Borehole No. 1 in Gotland, Sweden. Sveriges Geologiska Undersökning, Series C 655:175.Google Scholar
Knoll, A. H. 1982. Microfossils from the late Precambrian Draken Conglomerate, NY Friesland, Svalbard. Journal of Paleontology, 56:755790.Google Scholar
Knoll, A. H. 1984. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. 1992. Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard. Palaeontology, 35:751774.Google Scholar
Knoll, A. H., Strother, P. K., and Rossi, S. 1988. Distribution and diagenesis of microfossils from the lower Proterozoic Duck Creek Dolomite, Western Australia. Precambrian Research, 38:257279.CrossRefGoogle ScholarPubMed
Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531570.Google Scholar
Kolosova, S. P. 1991. Pozdnedokembriyskie shipovatie mikrofossilii vostoka sibirkoy platformi [Late Precambrian acanthomorphic acritarchs from the eastern Siberian Platform]. Algologiya [Algologia], 1:5359.Google Scholar
Lemmermann, E. 1904. Das plankton schwedischer Gewässer. Arkiv för botanik, Band 2, 2:1209.Google Scholar
Li, C. W., Chen, J. Y., Lipps, J. H., Gao, F., Chi, H. M., and Wu, H. J. 2007. Ciliated protozoans from the Precambrian Doushantuo Formation, Wengan, South China, p. 151156. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publications 286.Google Scholar
Li, G., Xue, Y., and Zhou, C. 1997. Late Proterozoic tubular fossils from the Doushantuo Formation of Weng'an, Guizhou, China. Palaeoworld, 7:2937.Google Scholar
Li, Y., Zhang, X. L., Guo, J. F., Ding, L. F., Han, J., and Shu, D. G. 2003. New materials of phosphatized cylindrical and tabulate microfossils from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Acta Palaeontologica Sinica, 42:200207.Google Scholar
Liu, P., Xiao, S., Yin, C., Tang, F., and Gao, L. 2009b. Silicified tubular microfossils from the upper Doushantuo Formation (Ediacaran) in the Yangtze Gorges area, South China. Journal of Paleontology, 83:630633.Google Scholar
Liu, P., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F. 2008. Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China. Palaeontology, 51:339366.CrossRefGoogle Scholar
Liu, P., Yin, C., Chen, S., Li, M., Gao, L., and Tang, F. 2012a. Discussion on the chronostratigraphic subdivision of the Ediacaran (Sinian) in the Yangtze Gorges area, South China. Acta Geologica Sinica (Chinese edition), 86:849866.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L. 2009a. New data of phosphatized globular fossils from Weng'an biota in the Ediacaran Doushantuo Formation and the problem concerning their affinity. Acta Geoscientica Sinica, 30:457464.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L. 2010. Affinity, distribution and stratigraphic signification of tubular microfossils from Ediacaran Doushantuo Formation in South China. Acta Palaeontologica Sinica, 49:308324.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L. 2012b. Discovery of Ceratosphaeridium (Acritarcha) from the Ediacaran Doushantuo Formation in Yangtze Gorges, South China and its biostratigraphic implication. Bulletin of Geosciences, 87:195200.Google Scholar
Liu, P., Yin, C., Chen, S., Tang, F., and Gao, L. 2013. The biostratigraphic succession of acanthomorphic acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China and its biostratigraphic correlation with Australia. Precambrian Research, 225:2943.Google Scholar
Liu, P., Yin, C., Gao, L., Tang, F., and Chen, S. 2009c. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chinese Science Bulletin, 54:10581064.CrossRefGoogle Scholar
Liu, P., Yin, C., Tang, F., Gao, L., and Wang, Z. 2007. Progresses and questions on studying metazoan fossils of the Weng'an biota. Geological Review, 53:728735.Google Scholar
Lo, S.-C. C. 1980. Microbial fossils from the lower Yudoma Suite, earliest Phanerozoic, eastern Siberia. Precambrian Research, 13:109166.Google Scholar
Luo, Q., Wang, F., and Wang, Y. 1982. Uppermost Sinian–lowest Cambrian age microfossils from Qingzhen–Zhijin County, Guizhou Province. Bulletin Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Sciences, 6:2341.Google Scholar
Luo, Q., Wang, F., Wang, Y., and Yin, G. 1984. A preliminary study on the uppermost Sinian–lowest Cambrian age microfossils from Qingzhen–Zhijin County in Guizhou, p. 107116. In Wang, Y., Yin, G., Zheng, S., Qing, S., Zhu, S., Chen, Y., Luo, Q., Wang, F., and Qian, Y. (eds.), The Upper Precambrian and Sinian–Cambrian Boundary in Guizhou. The People's Publishing House of Guizhou, Guiyang.Google Scholar
Maithy, P. K. 1975. Micro-organisms from the Bushimay System (late Precambrian) of Kanshi, Zaire. The Palaeobotanist, 22:133149.Google Scholar
Maithy, P. K. and Mandal, J. 1983. Microbiota from Vindhyan Supergroup of the Karauli Sapotra region of northeast Rajasthan, India. The Palaeobotanist, 31:129142.Google Scholar
Maithy, P. K. and Shukla, M. 1977. Microbiota from the Suket Shales, Ramapura, Vindhyan System (late Precambrian) Madhya Pradesh. The Palaeobotanist, 23:176188.Google Scholar
Mandal, J., Maithy, P. K., Barman, G., and Verma, K. K. 1984. Microbiota from the Kushalgarh Formation, Delhi Supergroup, India. The Palaeobotanist, 32:119.Google Scholar
McFadden, K. A., Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxygenation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, U.S.A., 105:31973202.CrossRefGoogle ScholarPubMed
McFadden, K. A., Xiao, S., Zhou, C., and Kowalewski, M. 2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Research, 173:170190.Google Scholar
Moczydlowska, M. 2005. Taxonomic review of some Ediacaran acritarchs from the Siberian Platform. Precambrian Research, 136:283307.Google Scholar
Moczydlowska, M. 2011. The early Cambrian phytoplankton radiation: acritarch evidence from the Lükati Formation, Estonia. Palynology, 35:103145.Google Scholar
Moczydlowska, M. and Nagovitsin, K. E. 2012. Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia. Precambrian Research, 198 199:1 24.Google Scholar
Moczydlowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36:495521.Google Scholar
Moore, J. L., Porter, S. M., Steiner, M., and Li, G. 2010. Cambrothyra ampulliformis, an unusual coeloscleritophoran from the lower Cambrian of Shaanxi Province, China. Journal of Paleontology, 84:10401060.Google Scholar
Muir, M. D. 1976. Proterozoic microfossils from the Amelia Dolomite, McArthur Basin, Northern Territory. Alcheringa, 1:143158.Google Scholar
Nagovitsyn, K. E., Faizullin, M. S., and Yakshin, M. S. 2004. New forms of Baikalian acanthomorphytes from the Ura Formation of the Patom Uplift, East Siberia. Geologiya e Geofisika, 45:719.Google Scholar
Naumova, S. N. 1949. Spory nizhnego kembriya (Spores from the lower Cambrian). Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 1949(4):4956.Google Scholar
Nautiyal, A. C. 1980. Cyanophycean algal remains and palaeoecology of the Precambrian Gangolihat Dolomite Formation of the Kumaon Himalaya, India. Indian Journal of Earth Sciences, 7:111.Google Scholar
Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa, 2:269309.CrossRefGoogle Scholar
Oehler, J. H. 1977. Microflora of the H. Y. C. Pyrite Shale Member of the Barney Creek Formation (McArthur Group), middle Proterozoic of northern Australia. Alcheringa, 1:315349.Google Scholar
Ogurtsova, R. N. and Sergeev, V. N. 1987. Mikrobiota chichkanskoj svity verkhnego dokembriya Malogo Karatau (yuzhnyj Kazakhstan) [The microbiota of the upper Precambrian Chichkan Formation in the Lesser Karatau region (southern Kazakhstan)]. paleontologicheskij Zhurnal (Palaeontological Journal), 1987(2):107116. (English translation 1987(1982):1101–1112). Google Scholar
Peterson, K. J. and Butterfield, N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences, U.S.A., 102:95479552.Google Scholar
Porter, S. M., Meisterfeld, R., and Knoll, A. H. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology, 77:409429.Google Scholar
Qian, Y., Sun, W., He, T., and Chen, M. 2000. Restudy on “vase-shaped microfossils” from the lower Cambrian Xihaoping Member in South Shaanxi and West Hubei. Acta Micropalaeontologica Sinica, 17:317326.Google Scholar
Qian, Y. and Zhang, S. 1983. Small shelly fossils from the Xihaoping Member of the Tongying Formation in Fangxian County of Hubei Province and their stratigraphical significance. Acta Palaeontologica Sinica, 22:8294.Google Scholar
Raff, E. C., Vilinski, J. T., Turner, F. R., Donoghue, P. C. J., and Raff, R. A. 2006. Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences, U.S.A., 103:58465851.Google Scholar
Sarjeant, W. A. S. and Stancliffe, R. P. W. 1994. The Micrhystridium and Veryhachium complexes (Acritarcha: Acanthomorphitae and Polygonomorphitae): a taxonomic reconsideration. Micropaleontology, 40:177.Google Scholar
Schiffbauer, J. D., Xiao, S., Sen Sharma, K., and Wang, G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 40:223226.CrossRefGoogle Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W. and Barghoorn, E. S. 1969. Microorganisms from the late Precambrian of South Australia. Journal of Paleontology, 43:111118.Google Scholar
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45:925960.Google Scholar
Sergeev, V. N., Knoll, A. H., and Vorob'Eva, N. G. 2011. Ediacaran microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: taxonomy and biostratigraphic significance. Journal of Paleontology, 85:9871011.CrossRefGoogle Scholar
Sergeev, V. N. and Schopf, J. W. 2010. Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of south Kazakhstan: the marine biosphere on the eve of metazoan radiation. Journal of Paleontology, 84:363401.Google Scholar
Tang, T., Zhang, J., and Jiang, X. 1978. Discovery and significance of the late Sinian fauna from western Hunan and Hubei. Acta Stratigraphica Sinica, 2:3245.Google Scholar
Timofeev, B. V. and Herman, T. N. 1979. Precambrian microbiota of the Lakhanda Formation, p. 137147. In Sokolov, B. S. (ed.), Paleontology of the Precambrian and Early Cambrian. Nauka, Leningrad. (In Russian) Google Scholar
Tiwari, M. and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5:193201.Google Scholar
Turner, R. E. 1984. Acritarchs from the type area of the Ordovician Caradoc Series, Shropshire, England. Palaeontographica Abteilung B, 190:87157.Google Scholar
Vavrdová, M. 1966. Palaeozoic microplankton from central Bohemia. Casopis pro mineralogii a geologii, 11:409414.Google Scholar
Veis, A. F., Vorob'eva, N. G., and Golubkova, E. Y. 2006. The early Vendian microfossils first found in the Russian Plate: taxonomic composition and biostratigraphic significance. Stratigraphy and Geological Correlation, 14:368385.Google Scholar
Venkatachala, B. S., Bhandari, L. L., Chaube, A. N., and Rawat, M. S. 1974. Organic remains from Dharwar sediments. The Palaeobotanist, 21:2738.Google Scholar
Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33:287298.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009a. Neoproterozoic microfossils from the margin of the East European Platform and the search for a biostratigraphic model of lower Ediacaran rocks. Precambrian Research, 173:163169.CrossRefGoogle Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2009b. Neoproterozoic microfossils from the northeastern margin of the East European Platform. Journal of Paleontology, 83:161196.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Chumakov, N. M. 2008. New finds of early Vendian microfossils in the Ura Formation: revision of the Patom Supergroup Age, middle Siberia. Doklady Earth Sciences, 419A:411416.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Semikhatov, M. A. 2006. Unique lower Vendian Kel'tma microbiota, Timan ridge: new evidence for the paleontological essence and global significance of the Vendian system. Doklady Earth Sciences, 410:10381043.Google Scholar
Wang, F. 1985. Middle–upper Proterozoic and lowest Phanerozoic microfossil assemblage from SW China and contiguous areas. Precambrian Research, 29:3343.Google Scholar
Wang, F., Zhang, X., and Guo, R. 1983. The Sinian microfossils from Jinning, Yunnan, Southwest China. Precambrian Research, 23:133175.Google Scholar
Willman, S. 2007. Acritarchs and their potential in Ediacaran biostratigraphy—examples from the Officer Basin, Australia. Comunicações Geológicas, 94:8192.Google Scholar
Willman, S. and Moczydlowska, M. 2007. Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia. Lethaia, 40:111123.Google Scholar
Willman, S. and Moczydlowska, M. 2008. Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Research, 162:498530.Google Scholar
Willman, S. and Moczydlowska, M. 2011. Acritarchs in the Ediacaran of Australia—local or global significance? Evidence from the Lake Maurice West I drillcore. Review of Palaeobotany and Palynology, 166:1228.Google Scholar
Willman, S., Moczydlowska, M., and Grey, K. 2006. Neoproterozoic (Ediacaran) diversification of acritarchs: a new record from the Murnaroo I drillcore, eastern Officer Basin, Australia. Review of Palaeobotany and Palynology, 139:1739.Google Scholar
Xiao, S. 2004. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). Journal of Paleontology, 78:393401.Google Scholar
Xiao, S. 2014. Oxygen and animal evolution. In Canfield, D. E., Farquhar, J., and Kasting, J. F. (eds.), Treatise on Geochemistry, Volume 13: The Atmosphere. Volume in press. Elsevier, Dordrecht.Google Scholar
Xiao, S. and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.Google Scholar
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.Google Scholar
Xiao, S., Knoll, A. H., Schiffbauer, J. D., Zhou, C., and Yuan, X. 2012a. Comment on “Fossilized nuclei and germination structures identify Ediacaran ‘animal embryos’ as encysting protists.” Science, 335:1169c.Google Scholar
Xiao, S., Knoll, A. H., Yuan, X., and Pueschel, C. M. 2004. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany, 91:214227.Google Scholar
Xiao, S., McFadden, K. A., Peek, S., Kaufman, A. J., Zhou, C., Jiang, G., and Hu, J. 2012b. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Research, 192–195:125141.Google Scholar
Xiao, S., Schiffbauer, J. D., McFadden, K. A., and Hunter, J. 2010. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth and Planetary Science Letters, 297:481495.Google Scholar
Xiao, S., Yuan, X., and Knoll, A. H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proceedings of the National Academy of Sciences, U.S.A., 97:1368413689.Google Scholar
Xiao, S., Zhou, C., Liu, P., Wang, D., and Yuan, X. 2014. Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation. Journal of Paleontology, 88:167.CrossRefGoogle Scholar
Xu, Z.-L. and Awramik, S. M. 2001. New microorganisms from the Gaoyuzhuang Formation of northern Taihang Mountains, China. Acta Botanica Sinica, 43:295311.Google Scholar
Xue, Y., Tang, T., and Yu, C. 1992. Discovery of the oldest skeletal fossils from upper Sinian Doushantuo Formation in Weng'an, Guizhou, and its significance. Acta Palaeontologica Sinica, 31:530539.Google Scholar
Yan, Y. 1982. Scizofusa from the Chuanlinggou Formation of Changcheng System in Jixian County. Bulletin, Tianjin Institute of Geology and Mineral Resources, 6:17.Google Scholar
Yao, J., Xiao, S., Yin, L., Li, G., and Yuan, X. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology, 48:687708.Google Scholar
Yin, C. 1990. Spinose acritarchs from the Toushantuo Formation and its geological significance. Acta Micropalaeontologica Sinica, 7:265270.Google Scholar
Yin, C. 1992. A new algal fossil from early Cambrian in Qingzhen county, Guizhou Province, China. Acta Botanica Sinica, 34:456460.Google Scholar
Yin, C. 1999. Microfossils from the upper Sinian (late Neoproterozoic) Doushantuo Formation in Changyang, western Hubei, China. Continental Dynamics, 4:118.Google Scholar
Yin, C., Bengtson, S., and Yue, Z. 2004. Silicified and phosphatized Tianzhushanian, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China. Acta Palaeontologica Polonica, 49:112.Google Scholar
Yin, C., Gao, L., and Xing, Y. 2003. Silicified microfossils from the early Cambrian Tianzhushan Member near Miaohe village, Zigui, west Hubei, China. Acta Palaeontologica Sinica, 42:7688.Google Scholar
Yin, C. and Liu, G. 1988. Micropaleofloras, p. 170180. In Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B., and Han, P. (eds.), The Sinian System of Hubei. China University of Geosciences Press, Wuhan.Google Scholar
Yin, C., Liu, P., Awramik, S. M., Chen, S., Tang, F., Gao, L., Wang, Z., and Riedman, L. A. 2011. Acanthomorph biostratigraphic succession of the Ediacaran Doushantuo Formation in the East Yangtze Gorges, South China. Acta Geologica Sinica (English Edition), 85:283295.Google Scholar
Yin, C., Liu, P., Chen, S., Tang, F., Gao, L., and Wang, Z. 2009b. Acritarch biostratigraphic succession of the Ediacaran Doushantuo Formation in the Yangtze Gorges. Acta Palaeontologica Sinica, 48:146154.Google Scholar
Yin, C., Liu, Y., Gao, L., Wang, Z., Tang, F., and Liu, P. 2007. Phosphatized Biota in Early Sinian (Ediacaran)—Weng'an Biota and Its Environment. Geological Publishing House, Beijing, 132 p.Google Scholar
Yin, C., Tang, F., Liu, P., Gao, L., Wang, Z., and Chen, S. 2009a. New advances in the study of biostratigraphy of the Sinian (Ediacaran) Doushantuo Formation in South China. Acta Geoscientica Sinica, 30:421432.Google Scholar
Yin, L. 1981. Precambrian microfossils and pseudofossils from the Gaoyuzhuang Formation in Quyang of Hebei. Acta Palaeontologica Sinica, 20:189198.Google Scholar
Yin, L. 1985. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hubei. Palaeontologia Cathayana, 2:229249.Google Scholar
Yin, L. 1987. Microbiotas of latest Precambrian sequences in China, p. 415494. In Nanjing Institute of Geology and Palaeontology Academica Sinica (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian–Cambrian Boundary (1). Nanjing University Press, Nanjing.Google Scholar
Yin, L. and Li, Z. 1978. Precambrian microfloras of southwest China with reference to their stratigraphic significance. Memoir Nanjing Institute of Geology and Palaeontology, Academia Sinica, 10:41108.Google Scholar
Yin, L., Wang, D., Yuan, X., and Zhou, C. 2011. Diverse small spinose acritarchs from the Ediacaran Doushantuo Formation, South China. Palaeoworld, 20:279289.Google Scholar
Yin, L., Zhou, C., and Yuan, X. 2008. New data on Tianzhushania—an Ediacaran diapause egg cyst from Yichang, Hubei. Acta Palaeontologica Sinica, 47:129140.Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661663.Google Scholar
Yin, Z., Zhu, M., Tafforeau, P., Chen, J., Liu, P., and Li, G. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an Biota, South China. Precambrian Research, 225:4457.Google Scholar
Yuan, X. and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa, 22:189222.Google Scholar
Yuan, X., Xiao, S., Yin, L., Knoll, A. H., Zhou, C., and Mu, X. 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. China University of Science and Technology Press, Hefei, China, 171 p.Google Scholar
Zang, W. and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. The Association of Australasia Palaeontologists Memoir, 12:1132.Google Scholar
Zhang, L. 1994. A new progress in research on vase-shaped microfossils from the Dengying Formation of Sinian in southern Shaanxi Province. Acta Geologica Gansu, 3(2):18.Google Scholar
Zhang, S., Jiang, G., and Han, Y. 2008. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 20:289294.Google Scholar
Zhang, Y. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (early Sinian: Riphean), Hebei, China. Journal of Paleontology, 55:485506.Google Scholar
Zhang, Y. 1989. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 22:113132.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Journal of Paleontology, supplement to volume 72, 4, 52 p.Google Scholar
Zhang, Y. and Yuan, X. 1992. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia, 25:118.Google Scholar
Zhang, Z. 1984. A new microphytoplankton species from the Sinian of western Hubei Province. Acta Botanica Sinica, 26:9498.Google Scholar
Zhang, Z. 1986. New material of filamentous fossil cyanophytes from the Dushantuo Formation (late Sinian) in the eastern Yangtze Gorges. Scientia Geologica Sinica, 21:3037.Google Scholar
Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B., and Han, P. 1988. The Sinian System of Hubei. China University of Geosciences Press, Wuhan, 205 p.Google Scholar
Zhao, Z., Xing, Y., Ma, G., and Chen, Y. 1985. Biostratigraphy of the Yangtze Gorge Area, (1) Sinian. Geological Publishing House, Beijing, 143 p.Google Scholar
Zhou, C., Brasier, M. D., and Xue, Y. 2001. Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei provinces, South China. Palaeontology, 44:11571178.Google Scholar
Zhou, C., Chen, Z., and Xue, Y. 2002. New microfossils from the late Neoproterozoic Doushantuo Formation at Chaoyang phosphorite deposit in Jiangxi Province, South China. Acta Palaeontologica Sinica, 41:178192.Google Scholar
Zhou, C., Xie, G., McFadden, K., Xiao, S., and Yuan, X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance. Geological Journal, 42:229262.Google Scholar
Zhu, B., Becker, H., Jiang, S., Pi, D., Fischer-Gödde, M., and Yang, J. 2013a. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China. Precambrian Research, 225:6776.Google Scholar
Zhu, M., Lu, M., Zhang, J., Zhao, F., Li, G., Yang, A., Zhao, X., and Zhao, M. 2013b. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Research, 225:728.Google Scholar
Zhu, S. 1982. A preliminary study of fossil micro-organisms from stromatolites in the lower part of Sinian Suberathem, Yanshan Range. Bulletin of the Tianjin Institute of Geology and Mineral Resources, 5:I26.Google Scholar