Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T01:22:14.079Z Has data issue: false hasContentIssue false

The European Paromomyidae (Primates, Mammalia): taxonomy, phylogeny, and biogeographic implications

Published online by Cambridge University Press:  09 May 2018

Sergi López-Torres
Affiliation:
Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada 〈sergi.lopeztorres@mail.utoronto.ca〉 Current address: Department of Evolutionary Paleobiology, Roman Kozłowski Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, Warsaw 00-818, Poland 〈slopeztorres@twarda.pan.pl〉
Mary T. Silcox
Affiliation:
Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada 〈msilcox@utsc.utoronto.ca〉

Abstract

Plesiadapiforms represent the first radiation of Primates, appearing near the Cretaceous-Paleogene boundary. Eleven families of plesiadapiforms are recognized, including the Paromomyidae. Four species of paromomyids from the early Eocene have been reported from Europe: Arcius fuscus Russell et al., 1967, Arcius lapparenti Russell et al., 1967, and Arcius rougieri Godinot, 1984 from France and Arcius zbyszewskii Estravís, 2000 from Portugal. Other Arcius specimens from the early Eocene are known from Masia de l’Hereuet (Spain), Abbey Wood (England), and Sotteville-sur-Mer (Normandy, France). A cladistic analysis of the European paromomyids has never previously been published. A total of 53 dental characters were analyzed for the four Arcius species and the specimens from Spain, England, and Normandy. The results of a parsimony analysis using TNT agree with previous conceptions of A. zbyszewskii as the most primitive member of the genus. Consistent with existing hypotheses, Arcius rougieri is positioned as the sister taxon of A. fuscus and A. lapparenti, and the results suggest that the fossil from Normandy is A. zbyszewskii. However, the English fossil pertains to a primitive lineage, rather than grouping with A. lapparenti as had been suggested; as such it is recognized here as a distinct species (Arcius hookeri new species). The Spanish fossils cluster together with the French species but do not show the previously proposed special relationship with A. lapparenti and are sufficiently distinct to be placed in a new species (Arcius ilerdensis). Arcius is recovered as monophyletic, which is consistent with a single migration event from North America to Europe around the earliest Eocene through the Greenland land bridge.

UUID: http://zoobank.org/f4aac438-82d2-4a25-887b-3e0c072d87f6

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antunes, M.T., 1981, As areias e argilas de Silveirinha. II – Aspectos paleontológicos: Memórias e Noticias: Publicações do Museu e Laboratório Mineralógico e Geológico da Universidade de Coimbra, v. 91–92, p. 253267.Google Scholar
Antunes, M.T., and Russell, D.E., 1981, Le gisement de Silveirinha (Bas Mondego, Portugal): la plus ancienne faune de Vertébrés éocènes connue en Europe: Comptes Rendus de l’Académie des Sciences Paris, Série II, v. 293, p. 10991102.Google Scholar
Antunes, M.T., Casanovas, M.L., Cuesta, M.A., Checa, L., Santafé, J.V., and Agustí, J., 1997, Eocene mammals from the Iberian Peninsula, in Aguilar, J.P., Legendre, S., and Michaux, J., eds., Actes du Congrès BiochroM’97: Montpellier, École Pratique des Hautes Études Institute de Montpellier, p. 337352.Google Scholar
Aumont, A., 2003, Systématique et phylogénie des Paromomyidés européens (Eocène – Plésiadapiformes, Mammifères) [Ph.D. thesis]: Paris, Muséum National d’Histoire Naturelle de Paris, 427 p.Google Scholar
Aumont, A., 2004, Première découverte d’espèces sympatriques de Paromomyidés (Plésiadapiformes, Mammifères) en Europe: C. R. Palevol, v. 3, p. 2734.Google Scholar
Badiola, A., Checa, L., Cuesta, M.A., Quer, R., Hooker, J.J., and Astibia, H., 2009, The role of new Iberian finds in understanding European Eocene mammalian paleobiogeography: Geologica Acta, v. 7, p. 243258.Google Scholar
Beard, K.C., 1989, Postcranial anatomy, locomotor adaptations, and paleoecology of early Cenozoic Plesiadapidae, Paromomyide, and Micromomyidae (Eutheria, Dermoptera) [Ph.D. thesis]: Baltimore, Johns Hopkins University, 661 p.Google Scholar
Beard, K.C., 1990, Gliding behaviour and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera): Nature, v. 345, p. 340341.Google Scholar
Beard, K.C., 1991, Vertical posture and climbing in the morphotype of Primatomorpha; Implications for locomotor evolution in primate history, in Coppens, Y., and Senut, B., eds., Origines de la Bipédie chez les Hominidés: Paris, France, CNRS.Google Scholar
Beard, K.C., 1993a, Origin and evolution of gliding in early Cenozoic Dermoptera (Mammalia, Primatomorpha), in MacPhee, R.D.E., ed., Primates and Their Relatives in Phylogenetic Perspective: New York, New York, Plenum Press, p. 6390.Google Scholar
Beard, K.C., 1993b, Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera, in Szalay, F.S., Novacek, M.J., and McKenna, M.C., eds., Mammal Phylogeny: Placentals: New York, New York, Springer-Verlag, p. 129150.Google Scholar
Beard, K.C., Wang, Y.-Q., Meng, J., Ni, X.-J., Gebo, D.L., and Li, C.-K., 2010, Paleocene Hapalodectes (Mammalia: Mesonychia) from Subeng, Nei Mongol: Further evidence of “East of Eden” dispersal at the Paleocene-Eocene boundary: Vertebrata PalAsiatica, v. 48, p. 375389.Google Scholar
Bloch, J.I., and Boyer, D.M., 2002, Grasping primate origins: Science, v. 298, p. 16061610.Google Scholar
Bloch, J.I., and Boyer, D.M., 2007, New skeletons of Paleocene-Eocene Plesiadapiformes: A diversity of arboreal positional behaviors in early primates, in Ravosa, M.J., and Dagosto, M., eds., Primate Origins: Adaptations and Evolution: New York, New York, Plenum Press, p. 535581.Google Scholar
Bloch, J.I., and Silcox, M.T., 2006, Cranial anatomy of the Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates: Journal of Human Evolution, v. 50, p. 135.Google Scholar
Bloch, J.I., Boyer, D.M., Gingerich, P.D., and Gunnell, G.F., 2002, New primitive paromomyid from the Clarkforkian of Wyoming and dental eruption in Plesiadapiformes: Journal of Vertebrate Paleontology, v. 22, p. 366379.Google Scholar
Bloch, J.I., Silcox, M.T., Boyer, D.M., and Sargis, E.J., 2007, New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates: Proceedings of the National Academy of Sciences of the United States, v. 104, p. 11591164.Google Scholar
Bown, T.M, and Rose, K.D., 1976, New early Tertiary Primates and a reappraisal of some Plesiadapiformes: Folia Primatologica, v. 26, p. 109138.Google Scholar
Boyer, D.M., and Bloch, J.I., 2008, Evaluating the Mitten-Gliding Hypothesis for Paromomyidae and Micromomyidae (Mammalia, “Plesiadapiformes”) using comparative functional morphology of new Paleogene skeletons, in Sargis, E.J., and Dagosto, M., eds., Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay: New York, New York, Springer-Verlag, p. 233284.Google Scholar
Checa, L., 1997, Los perisodáctilos (Mammalia, Ungulata) del eoceno catalán: Paleontologia i Evolució, v. 30–31, p. 149234.Google Scholar
Clemens, W.A., and Wilson, G.P., 2009, Early Torrejonian mammalian local faunas from northeastern Montana, U.S.A., in Albright L.B. III, ed., Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne: Museum of Northern Arizona Bulletin, Flagstaff, AZ, v. 65, p. 111158.Google Scholar
Conroy, G.C., 1987, Problems of body-weight estimation in fossil primates: International Journal of Primatology, v. 8, p. 115137.Google Scholar
Cope, E.D., 1874, Report upon vertebrate fossils discovered in New Mexico, with description of new species: Washington, D.C., Ann Rep Chief Engineers, U.S. Government Printing Office, Appendix FF, p. 118.Google Scholar
Cuesta, M.A., 1994, Los Lophiodontidae (Perissodactyla, Mammalia) del eoceno de la Cuenca del Duero (Castilla y León, España): Studia Geologica Salmanticensia, v. 29, p. 2365.Google Scholar
Dégremont, E., Duchaussois, F., Hautefeuille, F., Laurain, M., Louis, P., and Tetu, R., 1985, Paléontologie: découverte d’un gisement du Cuisien tardif à Prémontré: Bull Inf Géol Bass Paris, v. 22, p 1118.Google Scholar
Eberle, J.J., and Greenwood, D.R., 2012, Life at the top of the greenhouse Eocene world—A review of the Eocene flora and vertebrate fauna from Canada’s High Arctic: GSA Bulletin, v. 124, p. 323.Google Scholar
Escarguel, G., 1999, Les rongeurs de l’Eocène inférieur et moyen d’Europe Occidentale. Systématique, phylogénie, biochronologie et paléobiogéographie des niveaux-repères MP 7 a MP 14: Palaeovertebrata, v. 28, p. 89351.Google Scholar
Estravís, C., 1992, Estudo dos mamíferos do Eocénico Inferior de Silveirinha (Baixo Mondego) [Ph.D. thesis]: Lisbon, Universidade Nova de Lisboa, 254 p.Google Scholar
Estravís, C., 2000, Nuevos mamíferos del Eoceno Inferior de Silveirinha (Baixo Mondego, Portugal): Coloquios de Paleontología, v. 51, p. 281311.Google Scholar
Fox, R.C., and Scott, C.S., 2011, A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada: Journal of Paleontology, v. 85, p. 537548.Google Scholar
Fox, R.C., Scott, C.S., and Rankin, B.D., 2010, Edworthia lerbekmoi, a new primitive paromomyid primate from the Torrejonian (early Paleocene) of Alberta, Canada: Journal of Paleontology, v. 84, p. 868878.Google Scholar
Franzen, J.L., 2005, The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology: Annals of Paleontology, v. 91, p. 329335.Google Scholar
Gazin, C.L., 1971, Paleocene Primates from the Shotgun Member of the Fort Union Formation in the Wind River Basin, Wyoming: Proceedings of the Biological Society of Washington, v. 84, p. 1338.Google Scholar
Gidley, J.W., 1923, Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates: Proceedings of the United States National Museum, v. 63, p. 138.Google Scholar
Gingerich, P.D., Smith, B.H., and Rosenberg, K., 1982, Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils: American Journal of Physical Anthropology, v. 58, p. 81100.Google Scholar
Godinot, M., 1981, Les Mammifères de Rians (Éocène Inférieur, Provence): Palaeovertebrata, v. 10, p. 43126.Google Scholar
Godinot, M., 1984, Un noveau genre de Paromomyidae (Primates) de l’Eocène Inférieur d’Europe: Folia Primatologica, v. 43, p. 8496.Google Scholar
Goloboff, P.A., Farris, J.S., and Nixon, K.C., 2008, TNT, a free program for phylogenetic analysis: Cladistics, v. 24, p. 774786.Google Scholar
Gunnell, G.F., 1989, Evolutionary history of Microsopyoidea (Mammalia, ?Primates) and the relationship between Plesiadapiformes and Primates: University of Michigan Papers in Paleontology, v. 27, p. 1157.Google Scholar
Hooker, J.J., 1991, The sequence of mammals in the Thanetian and Ypresian of the London and Belgian basins. Localisation of the Paleocene-Eocene boundary: Newsletters on Stratigraphy, v. 25, p. 7590.Google Scholar
Hooker, J.J., 1996, Mammalian biostratigraphy across the Paleocene-Eocene boundary in the Paris, London and Belgian basins, in Knox, R.W.O’B., Corfield, R.M., and Dunay, R.E., eds., Correlation of the Early Paleogene in Northwest Europe: Geological Society Special Publication, v. 101, p. 205218.Google Scholar
Hooker, J.J., 1998, Mammalian faunal change across the Paleocene-Eocene transition in Europe, in Aubry, M.P., Lucas, S., and Berggren, W.A., eds., Climatic and Biotic Events in the Marine and Terrestrial Records: New York, New York, Columbia University Press, p. 428450.Google Scholar
Hooker, J.J., 2010, The mammal fauna of the early Eocene Blackheath Formation of Abbey Wood, London: Monograph of the Palaeontological Society, v. 165, p. 1162.Google Scholar
Hooker, J.J., 2015, A two-phase mammalian dispersal event across the Paleocene-Eocene transition: Newsletters on Stratigraphy, v. 48, p. 201220.Google Scholar
Hooker, J.J., and Insole, A.N., 1980, The distribution of mammals in the English Palaeogene: Tertiary Research, v. 3, p. 3145.Google Scholar
Hooker, J.J., and Russell, D.E., 2012, Early Palaeogene Louisinidae (Macroscelidea, Mammalia), their relationships and north European diversity: Zoological Journal of the Linnean Society, v. 164, p. 856936.Google Scholar
Kay, R.F., Thorington, R.W. Jr., and Houde, P., 1990, Eocene plesiadapiform shows affinities with flying lemurs not primates: Nature, v. 345, p. 342344.Google Scholar
Kay, R.F., Thewissen, J.G.M., and Yoder, A.D., 1992, Cranial anatomy of Ignacius graybullianus and the affinities of Plesiadapiformes: American Journal of Physical Anthropology, v. 89, p. 477498.Google Scholar
King, C., 2006, Paleogene and Neogene: Uplift and a cooling climate, in Brenchley, P.J., and Rawson, P.F., eds., The Geology of England and Wales (second edition): Geological Society of London, p. 395427.Google Scholar
Knox, R.W.O’B., 1998, The tectonic and volcanic history of the North Atlantic region during the Paleocene-Eocene transition: Implications for NW European and global biotic events, in Aubry, M.P., Lucas, S., and Berggren, W.A., eds., Climatic and Biotic Events in the Marine and Terrestrial Records: New York, New York, Columbia University Press, p. 91102.Google Scholar
Larsen, M., Bjerager, M., Nedkvitne, T., Olaussen, S., and Preuss, T., 2001, Pre-basaltic sediments (Aptian-Paleocene) of the Kangerlussuaq Basin, southern East Greenland: Geology of Greenland Survey Bulletin, v. 189, p. 99106.Google Scholar
Larsen, M., Piasecki, S., and Stemmerik, L., 2002, The post-basaltic Palaeogene and Neogene sediments at Kap Dalton and Savoia Halvø, East Greenland: Geology of Greenland Survey Bulletin, v. 191, p. 103110.Google Scholar
Linnaeus, C., 1758, Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima: Stockholm, Laurentii Salvii.Google Scholar
López-Martínez, N., Smith, R., Peláez-Campomanes, P., and Smith, T., 2006, The acme of the micromammal Paschatherium across the Paleocene-Eocene boundary in continental Europe: Micropaleontology, v. 52, p. 267280.Google Scholar
López-Torres, S., Schillaci, M.A., and Silcox, M.T., 2015, Life history of the most complete fossil primate skeleton: Exploring growth models for Darwinius : Royal Society Open Science, v. 2, 150340.Google Scholar
Louis, P., 1966, Note sure un nouveau gisement situé à Condé-en-Brie (Aisne) et renfermant des restes de mammifères de l’Eocène inférieur: Annales Scientifiques de l’Université de Reims et de l’ARERS, v. 4, p. 108118.Google Scholar
Louis, P., 1970, Note préliminaire sur un gisement de mammifères de l’Eocène inférieur situé route de Broyes à Sézanne (Marne): Annales Scientifiques de l’Université de Reims et de l’ARERS, v. 8, p. 4862.Google Scholar
Louis, P., and Laurain, M., 1983, Nouveau gisement de vertébrés dans le Cuisien supérieur de Saint-Agnan (Aisne) ses relations stratigraphiques avec les autres gisements yprésiens du bassin parisien: Bulletin d’Information des Géologues du Bassin de Paris, v. 20, p. 320.Google Scholar
Louis, P., and Michaux, J., 1962, Présence de mammifères sparnaciens dans les sablières de Pourcy (Marne): Compte Rendu Sommaire des Séances de la Société géologique de France, v. 6, p. 170171.Google Scholar
Marandat, B., 1986, Découverte d’une faunule de micromammifères d’âge cuisien supérieur dans les marno-calcaires d’Agel à Azillanet (Minervois, Hérault): Géologie de la France, v. 2, p. 197204.Google Scholar
Marandat, B., 1991, Mammifères de l’Ilerdien Moyen (Eocène inférieur) des Corbières et du Minervois (Bas-Languedoc, France): Systématique, biostratigraphie, corrélations: Palaeovertebrata, v. 20, p. 55144.Google Scholar
Marandat, B., 1997, La disparité des faunes mammaliennes du niveau MP 7 (Eocène inférieur) des domaines péri-mésogéens et nordiques. Investigation d’un provincialisme européen: Newsletters on Stratigraphy, v. 35, p. 6382.Google Scholar
Marandat, B., Adnet, S., Marivaux, L., Martinez, A., Vianey-Liaud, M., and Tabuce, R., 2012, A new mammalian fauna from the earliest Eocene (Ilerdian) of the Corbières (Southern France): Palaeogeographical implications: Swiss Journal of Geosciences, v. 105, p. 417434.Google Scholar
Marigó, J., Minwer-Barakat, R., Moyà-Solà, S., and López-Torres, S., 2012, First record of Plesiadapiformes (Primates, Mammalia) from Spain: Journal of Human Evolution, v. 62, p. 429433.Google Scholar
Marigó, J., Susanna, I., Minwer-Barakat, R., Madurell-Malapeira, J., Moyà-Solà, S., Casanovas-Vilar, I., Robles, J.M., and Alba, D.M., 2014, The primate fossil record in the Iberian Peninsula: Journal of Iberian Geology, v. 40, p. 179211.Google Scholar
Matthew, W.D., 1915, Entelonychia, Primates, Insectivora (part), in Matthew, W.D., and Granger, W., eds., A revision of the Lower Eocene Wasatch and Wind River faunas: Bulletin of the American Museum of Natural History, v. 34, p. 429483.Google Scholar
Matthew, W.D., and Granger, W., 1921, New genera of Paleocene mammals: American Museum Novitates, v. 13, 17.Google Scholar
Ni, X., Gebo, D.L., Dagosto, M., Meng, J., Tafforeau, P., Flynn, J.J., and Beard, K.C., 2013, The oldest known primate skeleton and early haplorhine evolution: Nature, v. 498, p. 6064.Google Scholar
Ni, X., Li, Q., Li, L., and Beard, K.C., 2016, Oligocene primates from China reveal divergence between African and Asian primate evolution: Science, v. 352, p. 673677.Google Scholar
Plaziat, J.-C., 1981, Late Cretaceous to late Eocene palaeogeographic evolution of southwest Europe: Palaeogeograpgy, Palaeoclimatology, and Palaeoecology, v. 36, p. 263320.Google Scholar
Radinsky, L.B., 1982, Some cautionary notes on making inferences about relative brain size, in Armstrong, E., and Falk, D., eds., Primate Brain Evolution: Methods and Concepts: New York, New York, Plenum, p. 2937.Google Scholar
Robinson, P., and Ivy, L.D., 1994, Paromomyidae (?Dermoptera) from the Powder River Basin, Wyoming and a discussion of microevolution in closely related species: Contributions to Geology, University of Wyoming, v. 30, p. 91116.Google Scholar
Rose, K.D., 1981, The Clarkforkian land-mammal age and mammalian faunal composition across the Paleocene-Eocene boundary: University of Michigan Papers on Paleontology, v. 26, p. 1196.Google Scholar
Rose, K.D., and Bown, T.M., 1982, New plesiadapiform primates from the Eocene of Wyoming and Montana: Journal of Vertebrate Paleontology, v. 2, p. 6369.Google Scholar
Rose, K.D., Beard, K.C., and Houde, P., 1993, Exceptional new dentitions of the diminutive plesiadapiforms Tinimomys and Niptomomys (Mammalia), with comments on the upper incisors of Plesiadapiformes: Annals of Carnegie Museum, v. 62, p. 351361.Google Scholar
Russell, D.E., Louis, P., and Savage, D.E., 1967, Primates of the French Early Eocene: University of California Publications in Geological Sciences, v. 73, p. 146.Google Scholar
Russell, D.E., Galoyer, A., Louis, P., and Gingerich, P.D., 1988, Nouveaux vertébrés sparnaciens du conglomérat de Meudon à Meudon, France: Comptes Rendus de l'Académie des Sciences Paris, v. 307, p. 429433.Google Scholar
Russell, D.E., de Broin, F., Galoyer, A., Gaudant, J., Gingerich, P.D., and Rage, J.-C., 1990, Les vértebrés du Sparnacien tu Meudon: Bulletin d’Information des Géologues du Bassin de Paris, v. 27, p. 2131.Google Scholar
Sargis, E.J., 2002, The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): An analysis of Primatomorpha and volitantian characters: Journal of Mammalian Evolution, v. 9, p. 137160.Google Scholar
Secord, R., 2008, The Tiffanian Land-Mammal Age (middle and late Paleocene) in the Northern Bighorn Basin, Wyoming: University of Michigan Papers in Paleontology, v. 35, p. 1192.Google Scholar
Silcox, M.T., 2001, A phylogenetic analysis of the Plesiadapiformes and their relationship to Euprimates and other Archonta [Ph.D. thesis]: Baltimore, Johns Hopkins University, 729 p.Google Scholar
Silcox, M.T., 2007, Primate taxonomy, plesiadapiforms, and approaches to primate origins, in Ravosa, M.J., and Dagosto, M., eds., Primate Origins: Adaptations and Evolution: New York, Plenum Press, p. 143178.Google Scholar
Silcox, M.T., 2008, The biogeographic origins of Primates and Euprimates: East, west, north, or south of Eden?, in Sargis, E.J., and Dagosto, M., eds., Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay: New York, New York, Springer-Verlag, p. 199231.Google Scholar
Silcox, M.T., 2017, Plesiadapiform, in Fuentes, A., ed., The International Encyclopedia of Primatology: Wiley, doi: 10.1002/978111917313.wbprim0038.Google Scholar
Silcox, M.T., and Gunnell, G.F., 2008, Plesiadapiformes, in Janis, C.M., Gunnell G.F., and Uhen, M.D., eds., Evolution of Tertiary Mammals of North America, v. Vol. 2: Cambridge, UK, Cambridge University Press, p. 207238.Google Scholar
Silcox, M.T., and López-Torres, S., 2017, Major questions in the study of primate origins: Annual Review of Earth Planetary Sciences, v. 45, p. 113137.Google Scholar
Silcox, M.T., and Williamson, T.E., 2012, New discoveries of early Paleocene (Torrejonian) primates from the Nacimiento Formation, San Juan Basin, New Mexico: Journal of Human Evolution, v. 63, p. 805833.Google Scholar
Silcox, M.T., Rose, K.D., and Bown, T.M., 2008, Early Eocene Paromomyidae (Mammalia, Primates) from the Southern Bighorn Basin, Wyoming: Systematics and evolution: Journal of Paleontology, v. 82, p. 10741113.Google Scholar
Silcox, M.T., Benham, A.E., and Bloch, J.I., 2010, Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates: Journal of Human Evolution, v. 58, p. 505521.Google Scholar
Silcox, M.T., Sargis, E.J., Bloch, J.I., and Boyer, D.M., 2015, Primate origins and supraordinal relationships: Morphological evidence, in Henke, W., and Tattersall, I., eds., Handbook of Palaeoanthropology (second edition): Berlin, Springer-Verlag, p. 10531081.Google Scholar
Silcox, M.T., Bloch, J.I., Boyer, D.M., Chester, S.G.B., and López-Torres, S., 2017, The evolutionary radiation of plesiadapiforms: Evolutionary Anthropology, v. 26, p. 7494.Google Scholar
Simpson, G.G., 1940, Studies on the earliest primates: Bulletin of the American Museum of Natural History, v. 77, p. 185212.Google Scholar
Simpson, G.G., 1955, The Phenacolemuridae, new family of early primates: Bulletin of the American Museum of Natural History, v. 105, p. 415441.Google Scholar
Smith, T., Dupuis, C., Folie, A., Quesnel, F., Storme, J.-Y., Iacumin, P., Riveline, J., Missiaen, P., Ladevèze, S., and Yans, J., 2011, A new terrestrial vertebrate site just after the Paleocene-Eocene boundary in the Mortermer Formation of Upper Normandy, France: Comptes Rendus Palevol, v. 10, p. 1120.Google Scholar
Szalay, F.S., 1968, The Picrodontidae, a family of early primates: American Museum Novitates, v. 2329, p. 155.Google Scholar
Szalay, F.S., 1975a, Phylogeny of primate higher taxa—the basicranial evidence, in Luckett, W.P., and Szalay, F.S., eds., Phylogeny of the Primates: New York, New York, Plenum Press, p. 91125.Google Scholar
Szalay, F.S., 1975b, Where to draw the nonprimate-primate taxonomic boundary: Folia Primatologica, v. 23, p. 158163.Google Scholar
Szalay, F.S., Tattersall, I., and Decker, R.L., 1975, Phylogenetic relationships of Plesiadapis—Postcranial evidence, in Szalay, F.S., ed., Approaches to Primate Paleobiology: Contributions to Primatology, v. 5, p. 136166.Google Scholar
Szalay, F.S., Rosenberger, A.L., and Dagosto, M., 1987, Diagnosis and differentiation of the order Primates: American Journal of Physical Anthropology, v. 30, p. 75105.Google Scholar
Tong, Y., and Wang, J., 1998, A preliminary report on the early Eocene mammals of the Wutu fauna, Shandong Province, China, in Beard, K.C., and Dawson, M.R., eds., Dawn of the Age of Mammals in Asia: Bulletin of the Carnegie Museum of Natural History, v. 34, p. 186193.Google Scholar
Van Valen, L., and Sloan, R.E., 1965, The earliest primates: Science, v. 150, p. 743745.Google Scholar
West, R.M., and Dawson, M.R., 1977, Mammals from the Palaeogene of the Eureka Sound Formation: Ellesmere Island, Arctic Canada: Géobios, v. 10, sup. 1, p. 107124.Google Scholar