Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T12:06:00.740Z Has data issue: false hasContentIssue false

A eurypterid trackway from the Middle Ordovician of New York State

Published online by Cambridge University Press:  19 September 2022

Simon J. Braddy
Affiliation:
Manorbier, Pembrokeshire, Wales, UK
Kenneth C. Gass*
Affiliation:
Milwaukee Public Museum, Milwaukee, Wisconsin 53233, USA
*
*Corresponding author.

Abstract

Palmichnium gallowayi (Sharpe, 1932) new combination from the Middle Ordovician Martinsburg Formation (proximal deltaic facies) of Rondout, near Kingston, New York State, is redescribed. It consists of opposing series of five tracks, the outer two large and pear-shaped, the inner three smaller and elliptical, arranged in a chevron converging in the direction of travel, on either side of a wide medial impression. It is attributed to a medium-sized stylonurid eurypterid using a decapodous gait, crawling onto the shoreline, traversing the intertidal zone, a behavior interpreted as part of its reproductive life cycle. This provides the earliest ichnological evidence for the ‘mass-molt-mate’ hypothesis, which proposes that eurypterids migrated en masse into nearshore environments to molt and mate.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, J.E., 2002, Giant arthropod trackway, Ecca Group: Geobulletin, v. 45, p. 28.Google Scholar
Anderson, A.M., 1975, The ‘trilobite’ trackways in the Table Mountain Group (Ordovician) of South Africa: Palæontologia Africana, v. 18, p. 3545.Google Scholar
Anderson, R.P., W.E. McCoy, W.E., McNamara, M.E., and Briggs, D.E.G., 2014, What big eyes you have: The ecological role of giant pterygotid eurypterids: Biology Letters, v. 10, 20140412, https://doi.org/10.1098/rsbl.2014.0412.CrossRefGoogle ScholarPubMed
Bertling, M., Braddy, S.J., Bromley, R.G., Demathieu, G.R., Genise, J.R., Mikuláš, R., Nielsen, J.K., Nielsen, K.S.S., Rindsberg, A.K., Schlirf, M., and Uchman, A., 2006, Names for trace fossils: A uniform approach: Lethaia, v. 39, p. 265286, https://doi.org/10.1080/00241160600787890.Google Scholar
Braddy, S.J., 1995, A new arthropod trackway and associated invertebrate ichnofauna from the lower Permian Hueco Formation of the Robledo Mountains, southern New Mexico: New Mexico Museum of Natural History and Science Bulletin, v. 6, p. 101105.Google Scholar
Braddy, S.J., 2001a, Eurypterid palaeoecology: Palaeobiological, ichnological and comparative evidence for a ‘mass-moult-mate’ hypothesis: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 172, p. 115132, https://doi.org/10.1016/S0031-0182(01)00274-7.CrossRefGoogle Scholar
Braddy, S.J., 2001b, Trackways—arthropod locomotion, in Briggs, D.E.G., and Crowther, P.R., eds. Palaeobiology II: Hoboken, New Jersey, Blackwell Science, p. 389393, https://doi.org/10.1002/9780470999295.ch92.CrossRefGoogle Scholar
Braddy, S.J., 2004, Ichnological evidence for the arthropod invasion of land: Fossils and Strata, v. 51, p. 136140.Google Scholar
Braddy, S.J., and Almond, J.E., 1999, Eurypterid trackways from the Table Mountain Group (Ordovician) of South Africa: Journal of African Earth Sciences, v. 29, p. 165177.CrossRefGoogle Scholar
Braddy, S.J., and Anderson, L.I., 1996, An upper Carboniferous trackway from Mostyn, Wales: Proceedings of the Geologists’ Association, v. 107, p. 5156.CrossRefGoogle Scholar
Braddy, S.J., and Milner, A.R.C., 1998, A large arthropod trackway from the Gaspé Sandstone Group (Middle Devonian) of eastern Canada: Canadian Journal of Earth Sciences, v. 35, p. 11161122.CrossRefGoogle Scholar
Braddy, S.J., Tollerton, V.P. Jr., Racheboeuf, P.P., and Schallreuter, R., 2004, Eurypterids, phyllocarids and ostracodes, in Webby, B.D., Droser, M.L., and Paris, F., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 255265, https://doi.org/10.7312/webb12678-026.CrossRefGoogle Scholar
Braddy, S.J., Poschmann, M., and Tetlie, O.E., 2008, Giant claw reveals the largest ever arthropod: Biology Letters, v. 4, p. 106109, https://doi.org/10.1098/rsbl.2007.0491.CrossRefGoogle ScholarPubMed
Braddy, S.J., Gass, K.C., and Gass, T.C., 2022, Fossils of Blackberry Hill, Wisconsin, USA: The first animals on land, 500 million years ago: Geology Today, v. 38, p. 2531, https://doi.org/10.1111/gto.12379.CrossRefGoogle Scholar
Brady, L.F., 1947, Invertebrate tracks from the Coconino Sandstone of northern Arizona: Journal of Paleontology, v. 21, p. 466472.Google Scholar
Briggs, D.E.G., and Rolfe, W.D.I., 1983, A giant arthropod trackway from the Lower Mississippian of Pennsylvania: Journal of Paleontology, v. 57, p. 377390.Google Scholar
Burton-Kelly, M.E., and Erickson, M., 2010, A new occurrence of Protichnites Owen, 1852, in the late Cambrian Potsdam Sandstone of the St. Lawrence Lowlands: The Open Paleontology Journal, v. 3, p. 113, https://doi.org/10.2174/1874425701003010001.CrossRefGoogle Scholar
Caster, K. E., 1938, A restudy of the tracks of Paramphibius: Journal of Paleontology, v. 12, p. 360.Google Scholar
Caster, K.E., and Brooks, H.K., 1956, New fossils from the Canadian-Chazan (Ordovician) hiatus in Tennessee: Bulletins of American Paleontology, v. 36, p. 157199.Google Scholar
Caster, K.E., and Kjellesvig-Waering, E.N., 1964, Upper Ordovician eurypterids of Ohio: Palaeontographica Americana, v. 4, p. 301358.Google Scholar
Cheng, H., Chabot, C.C., and Watson, W.H., 2016, Influence of environmental factors on spawning of the American Horseshoe Crab (Limulus polyphemus) in the Great Bay Estuary, New Hampshire, USA: Estuaries and Coasts, v. 39, p. 11421153, https://doi.org/10.1007/s12237-015-0044-2.CrossRefGoogle Scholar
Collette, J.H., and Hagadorn, J.W., 2010, Three-dimensionally preserved arthropods from Cambrian Lagerstätten of Quebec and Wisconsin: Journal of Paleontology, v. 84, p. 646667, https://doi.org/10.1666/09-075.1.CrossRefGoogle Scholar
Collette, J.H., Gass, K.C., and Hagadorn, J.W., 2012, Protichnites eremita unshelled? Experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies: Journal of Paleontology, v. 86, p. 442454, https://doi.org/10.1666/11-056.1.CrossRefGoogle Scholar
Crimes, T.P., 1970, Trilobite tracks and other trace fossils from the upper Cambrian of North Wales: Geological Journal, v. 7, p. 4768, https://doi.org/10.1002/gj.3350070104.CrossRefGoogle Scholar
Davies, N.S., Rygel, M.C., and Gibling, M.R., 2010, Marine influence in the Upper Ordovician Juniata Formation (Potters Mills, Pennsylvania): Implications for the history of life on land: Palaios, v. 25, p. 527–539, https://doi.org/10.2110/palo.2010.p10-025r.Google Scholar
Davis, R.B., Minter, N.J., and Braddy, S.J., 2007, The neoichnology of terrestrial arthropods: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 255, p. 284307, https://doi.org/10.1016/j.palaeo.2007.07.013.CrossRefGoogle Scholar
Dawson, J.W., 1873, Impressions of footprints of aquatic animals and imitative markings, on Carboniferous rocks: American Journal of Science, v. 5, p. 1624.CrossRefGoogle Scholar
De Kay, J.E., 1825, Observations on a fossil crustaceous animal of the order Branchiopoda: Annals of the Lyceum of Natural History of New York, v. 1825, p. 375377, pl. 29.Google Scholar
Draganits, E.S., Braddy, S.J., and Briggs, D.E.G., 2001, A Gondwanan coastal arthropod ichnofauna from the Muth Formation (Lower Devonian, northern India): Paleoenvironment and tracemaker behavior: Palaios, v. 16, p. 126147, https://doi.org/10.1669/0883-1351(2001)016<0126:AGCAIF>2.0.CO;2.Google Scholar
Dunlop, J.A., Anderson, L.I., and Braddy, S.J., 2004, A redescription of Chasmataspis laurencii Caster & Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 94, p. 207225, https://doi.org/10.1017/S0263593300000626.Google Scholar
Edgecombe, G.D., Strullu-Derrien, C., Góral, T., Hetherington, A.J., Thompson, C., and Koch, M., 2020, Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record: Proceedings of the National Academy of Sciences, v. 117, p. 89668972, https://doi.org/10.1073/pnas.1920733117.CrossRefGoogle Scholar
Elliott, D.K., and Petriello, P., 2011, New poraspids (Agnatha, Heterostraci) from the Early Devonian of the western United States: Journal of Vertebrate Paleontology, v. 31, p. 518530, https://doi.org/10.1080/02724634.2011.557113.CrossRefGoogle Scholar
Gass, K.C., 2015, Solving the Mystery of the First Animals on Land: The Fossils of Blackberry Hill: Manchester, UK, Siri Scientific Press, 96 p.Google Scholar
Gevers, T.W., Frakes, L.A., Edwards, L.N., and Marzolf, J.E., 1971, Trace fossils in the Lower Beacon sediments (Devonian), Darwin Mountains, southern Victoria Land, Antarctica: Journal of Paleontology, v. 45, p. 8194.Google Scholar
Gilmore, C.W., 1926, Fossil footprints from the Grand Canyon: Smithsonian Miscellaneous Collections, v. 77, p. 141.Google Scholar
Gilmore, C.W., 1927, Fossil footprints from the Grand Canyon: Second contribution: Smithsonian Miscellaneous Collections, v. 80, p. 178.Google Scholar
Häntzschel, W., 1975, Trace fossils and problematica, in Teichert, C., ed., Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1 (second edition, revised, enlarged): Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas Press), p. W001W269.Google Scholar
Hagadorn, J.W., and Seilacher, A., 2009, Hermit arthropods 500 million years ago?: Geology, v. 37, p. 295298, https://doi.org/10.1130/G25181A.1.Google Scholar
Hagadorn, J.W., Collette, J.H., and Belt, E.S., 2011, Eolian-aquatic deposits and faunas of the Middle Cambrian Potsdam Group: Palaios, v. 26, p. 314334, https://doi.org/10.2110/palo.2010.p10-061r.CrossRefGoogle Scholar
Hanken, N.M., and Størmer, L., 1975, The trail of a large Silurian eurypterid: Fossils and Strata, v. 4, p. 255270.Google Scholar
Harkness, R., 1856, On the lowest sedimentary rocks of the south of Scotland: Quarterly Journal of the Geological Society, v. 12, p. 238245.CrossRefGoogle Scholar
Hedge, J., Shillito, A.P., Davies, N.S., Butler, R.J., and Sansom, I.J., 2019, Invertebrate trace fossils from the Alveley Member, Salop Formation (Pennsylvanian, Carboniferous), Shropshire, UK: Proceedings of the Geologists' Association, v. 130, p. 103111, https://doi.org/10.1016/j.pgeola.2018.10.002.Google Scholar
Hitchcock, E., 1858, Ichnology of New England: A Report on the Sandstone of the Connecticut Valley, Especially Its Fossil Footmarks, Made to the Government of the Commonwealth of Massachusetts: Boston, W. White, 220 p.Google Scholar
Keighley, D.G., and Pickerill, R.K., 1998, Systematic ichnology of the Mabou and Cumberland groups (Carboniferous) of western Cape Breton Islands, eastern Canada, 2: Surface markings: Atlantic Geology, v. 34, p. 83112.Google Scholar
King, O.A., Miller, R.F., and Stimson, M.R., 2017, Ichnology of the Devonian (Emsian) Campbellton Formation, New Brunswick, Canada: Atlantic Geology, v. 53, p. 115, https//doi.org/10.4138/atlgeol.2017.001.CrossRefGoogle Scholar
King, O.A., Stimson, M.R., and Lucas, S.G., 2019, The ichnogenus Kouphichnium and related xiphosuran traces from the Steven C. Minkin Paleozoic footprint site (Union Chapel Mine), Alabama, USA: Ichnotaxonomic and paleoenvironmental implications: Ichnos, v. 26, p. 266302, https://doi.org/10.1080/10420940.2018.1561447.Google Scholar
Kjellesvig-Waering, E.N., 1964, A synopsis of the family Pterygotidae Clarke and Ruedemann, 1912 (Eurypterida): Journal of Paleontology, v. 38, p. 331361.Google Scholar
Knight, G.J., 1997, A reconstruction of eurypterid swimming [Ph.D dissertation]: Manchester, UK, University of Manchester, 271 pp.Google Scholar
Lamsdell, J.C., Van Roy, P., and Briggs, D.E.G., 2015a, A giant pterygotid eurypterid from the Early Ordovician Fezouata biota of Morocco: Geological Society of America Abstracts with Programs, v. 47, no. 7, p. 277.Google Scholar
Lamsdell, J.C., Briggs, D.E.G., Liu, H.P., Witzke, B.J., and McKay, R.M., 2015b, The oldest described eurypterid: A giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstätte of Iowa: BMC Evolutionary Biology, v. 15, p. 169, https://doi.org/10.1186/s12862-015-0443-9.CrossRefGoogle ScholarPubMed
Lamsdell, J.C., Gunderson, G.O., and Meyer, R.C., 2019, A common arthropod from the Late Ordovician Big Hill Lagerstätte (Michigan) reveals an unexpected ecological diversity within Chasmataspidida: BMC Evolutionary Biology, v. 19, p. 124, https://doi.org/10.1186/s12862-018-1329-4.CrossRefGoogle ScholarPubMed
Laub, R.S., Tollerton, V.P. Jr., and Berkof, R.S., 2010, The cheliceral claw of Acutiramus (Arthropoda: Eurypterida): Functional analysis based on morphology and engineering principles: Bulletin of the Buffalo Society of Natural Sciences, v. 39, p. 2942.Google Scholar
MacNaughton, R.B., Cole, J.M., Dalrymple, R.W., Braddy, S.J., Briggs, D.E.G., and Lukie, T.D., 2002, First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada: Geology, v. 30, p. 391394, https://doi.org/10.1130/0091-7613(2002)030<0391:FSOLAT>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
McCoy, V.E., Lamsdell, J.C., Poschmann, M., Anderson, R.P., and Briggs, D.E.G., 2015, All the better to see you with: Eyes and claws reveal the evolution of divergent ecological roles in giant pterygotid eurypterids: Biology Letters, v. 11, no. 8, 20150564, https://doi.org/10.1098/rsbl.2015.0564.CrossRefGoogle ScholarPubMed
Minter, N.J., and Braddy, S.J., 2009, Ichnology of an Early Permian tidal flat: The Robledo Mountains Formation of the Robledo Mountains, southern New Mexico, USA: Special Papers in Palaeontology, v. 82, p. 5107.Google Scholar
Minter, N.J., Braddy, S.J., and Davis, R.B., 2007, Between a rock and a hard place: Arthropod trackways and ichnotaxonomy: Lethaia, v. 40, p. 365375, https:/doi.org/10.1111/j.1502-3931.2007.00035.x.CrossRefGoogle Scholar
Minter, N., Buatois, L., Mángano, G., Davies, N., Gibling, M., MacNaughton, R., and Labandeira, C., 2017, Early bursts of diversification defined the faunal colonization of land: Nature Ecology & Evolution, v. 1, 0175, https://doi.org/10.17863/CAM.12604.CrossRefGoogle Scholar
Morrissey, L.B., Braddy, S.J., Dodd, C.D., Higgs, K., and Williams, B.P.J., 2011, Trace fossils and palaeoenvironments of the Middle Devonian Caherbla Group, Dingle Peninsula, southwest Ireland: Geological Journal, v. 47, p. 1–29, https://doi.org/10.1002/gj.1324.Google Scholar
Müller, O.F., 1785, Entomostraca seu Insecta Testacea: Lipsiae et Hafniae, p. 1135.CrossRefGoogle Scholar
Netto, R.G., Corrêa, C.G., Lima, J.H.D., Sedorko, D., and Villegas-Martín, J., 2021, Deciphering Myriapoda population dynamics during Gondwana deglaciation cycles through neoichnology: Journal of South American Earth Sciences, v. 109, 103247, https://doi.org/10.1016/j.jsames.2021.103247.CrossRefGoogle Scholar
Nopcsa, F., 1923, Die Familien der Reptilien: Fortschritte in der Geologie und Paläontologie, v. 2, p. 1210.Google Scholar
Owen, R., 1852, Description of the impressions and footprints of the Protichnites from the Potsdam sandstone of Canada: Geological Society of London Quarterly Journal, v. 8, p. 214225.CrossRefGoogle Scholar
Pfeiffer, H., 1968, Die Spurenfossilien des Kulms (Dinants) und Devons der Frankenwälder Querzone (Thüringen): Jahrbuch für Geologie, v. 2, p. 651717.Google Scholar
Plotnick, R.E., and Baumiller, T.K., 1988, The pterygotid telson as a biological rudder: Lethaia, v. 21, p. 1327.CrossRefGoogle Scholar
Poschmann, M., and Braddy, S.J., 2010, Eurypterid trackways from Early Devonian tidal facies of Alken an der Mosel (Rheinisches Schiefergebirge, Germany): Palaeobiodiversity and Palaeoenvironments, v. 90, p. 111124, https://doi.org/10.1007/s12549-010-0024-2.Google Scholar
Retallack, G.J., 2001, Scoyenia burrows from Ordovician paleosols of the Juniata Formation in Pennsylvania: Palaeontology, v. 44, p. 209235, https://doi.org/10.1111/1475-4983.00177.CrossRefGoogle Scholar
Retallack, G.J., 2020, Ordovician land plants and fungi from Douglas Dam, Tennessee: Palaeobotanist, v. 63, p. 133.Google Scholar
Richter, R., 1954, Fährte eines ‘Riesenkrebses’ im Rheinischen Schiefergebirge: Natur und Volk, v. 84, p. 261269.Google Scholar
Rudkin, D.M., Young, G.A., and Nowlan, G.S., 2008, The oldest horseshoe crab: A new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada: Palaeontology, v. 51, p. 19, https://doi.org/10.1111/j.1475-4983.2007.00746.x.CrossRefGoogle Scholar
Ruedemann, R., 1935, A review of the eurypterid rami of the genus Pterygotus, with the descriptions of two new Devonian species: Annals of the Carnegie Museum, ser. 164, v. 24, no. 6, p. 6972.CrossRefGoogle Scholar
Sadler, C.J., 1993, Arthropod trace fossils from the Permian De Chelly Sandstone, northeastern Arizona: Journal of Paleontology, v. 67, p. 240249.CrossRefGoogle Scholar
Seilacher, A., 1955, Spuren und Fazies im Un-terkambrium, in Schinderwolf, O.H., and Seilacher, A., eds. Beitrige zur Kenntnis des Kambriums in der Salt Range (Pakistan): Akademie der Wissenschaften und der Literatur zu Mainz, Mathematisch-naturwissen-schaftliche Klasse: Abhandlungen no. 10, p. 11143.Google Scholar
Seilacher, A., 2007, Trace Fossil Analysis: Berlin, Springer, 226 p.Google Scholar
Seilacher, A., and Hemleben, C., 1966, Spurenfauna und Bildungstiefe der Hunsrückschiefer (Unterdevon): Notizbl Hess Landesamt Bodenforsch, v. 94, p. 4053.Google Scholar
Selden, P.A., 1981, Functional morphology of the prosoma of Baltoeurypterus tetragonophthalmus (Fischer) (Chelicerata: Eurypterida): Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 72, p. 948.Google Scholar
Selden, P.A., 1984, Autecology of Silurian eurypterids: Special Papers in Palaeontology, v. 32, p. 3954.Google Scholar
Sharpe, C.F.S., 1932, Eurypterid trail from the Ordovician: American Journal of Science, ser. 5, v. 24, p. 355361.CrossRefGoogle Scholar
Shillito, A.P., and Davies, N.S., 2018, Death near the shoreline, not life on land: Ordovician arthropod trackways in the Borrowdale Volcanic Group, UK: Geology, v. 47, p. 5558, https://doi.org/10.1130/G45663.1.CrossRefGoogle Scholar
Smith, A., Braddy, S.J., Marriott, S.B., and Briggs, D.E.G., 2003, Arthropod trackways from the Early Devonian of South Wales: A functional analysis of producers and their behavior: Geological Magazine, v. 140, p. 6372, https://doi.org/10.1017/S0016756802006982.CrossRefGoogle Scholar
Smith, J., 1909, Upland fauna of the Old Red Sandstone Formation of Carrick, Ayrshire: Kilwinning, Scotland, A.W. Cross, 41 p.Google Scholar
Størmer, L., 1951, A new eurypterid from the Ordovician of Montgomeryshire, Wales: Geological Magazine, v. 88, p. 409422.CrossRefGoogle Scholar
Størmer, L., 1976, Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany, Part 5: Myriapoda and additional forms, with general remarks on fauna and problems regarding invasion of land by arthropods: Senckenbergiana Lethaea, v. 57, p. 87183.Google Scholar
Stürmer, W., and Bergström, J., 1981, Weinbergina, a xiphosuran arthropod from the Devonian Hunsrück Slate: Paläontologische Zeitschrift, v. 55, p. 237255.CrossRefGoogle Scholar
Tetlie, O.E., 2007, Distribution and dispersal history of Eurypterida (Chelicerata): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 557574, https://doi.org/10.1016/j.palaeo.2007.05.011.CrossRefGoogle Scholar
Tollerton, V.P. Jr., 1989, Morphology, taxonomy, and classification of the order Eurypterida Burmeister, 1843: Journal of Paleontology, v. 63, p. 642657.CrossRefGoogle Scholar
Tollerton, V.P. Jr., 2004, Summary of a revision of New York State Ordovician eurypterids: Implications for eurypterid palaeoecology, diversity and evolution: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 94, p. 235242, https://doi.org/10.1017/S026359330000064X.Google Scholar
Trewin, N.H., 1994, A draft system for the identification and description of arthropod trackways: Palaeontology, v. 37, p. 811823.Google Scholar
Trewin, N.H., and McNamara, K.J., 1995, Arthropods invade the land: Trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 85, p. 177210.Google Scholar
Van Ingen, G., and Clark, P. E., 1902, Disturbed fossiliferous rocks in the vicinity of Rondout, N.Y.: New York State Museum Bulletin, v. 69, p. 11671227.Google Scholar
Van Roy, P., Orr, P.J., Botting, J.P., Muir, L.A., Vinther, J., Lefebvre, B., Hariri, K., and Briggs, D.E.G., 2010, Ordovician faunas of Burgess Shale type: Nature, v. 465, p. 215218, https://doi.org/10.1038/nature09038.CrossRefGoogle ScholarPubMed
Vrazo, M.B., and Braddy, S.J., 2011, Testing the ‘mass-moult-mate’ hypothesis of eurypterid palaeoecology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 311, p. 6373, https://doi.org/10.1016/j.palaeo.2011.07.031.CrossRefGoogle Scholar
Vrazo, M.B., and Ciurca, S.J. Jr., 2017, New trace fossil evidence for eurypterid swimming behaviour: Palaeontology, v. 61, p. 235252, https://doi.org/10.1111/pala.12336.CrossRefGoogle Scholar
Waines, R.H., 1986, The Quassaic Group, a Medial to Late Ordovician arenite sequence in the Marlboro Mountains Outlier, mid-Hudson Valley, New York, U.S.A.: Geological Journal, v. 21, p. 337351.CrossRefGoogle Scholar
Walkowicz, J., and Plotnick, R.E., 2011, An Ordovician eurypterid from the Martinsburg Formation in Virginia: Geological Society of America Abstracts with Programs, v. 43, no. 1, p. 52.Google Scholar
Walter, H., 1984, Zur Ichnologie der Arthropoda: Freiberger Forschungsh, v. 391, p. 5894.Google Scholar
Whyte, M., 2005, A gigantic fossil arthropod trackway: Nature, v. 438, p. 576, https://doi.org/10.1038/438576a.CrossRefGoogle ScholarPubMed